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Chapter 1
Introduction and Preliminaries

Outline

The objective of this chapter is to revisit the elementary concepts essential

for this module. It is imperative that students be able to express linear

systems and signals mathematically and have basic understanding of signal

processing operations such as convolution and Fourier transforms. The

fundamental concepts covered in this chapter are

A© Introduction D© Signal and Systems

B© Historical background E© Sampling & Quantization

C© Fourier Transforms

Communication systems are designed to transmit and receive information. This

field has its roots in many areas of EE. Such as computers, electrical and electronic

circuits, electronic devices, digital signal processing, electromagnetics and photon-

ics.

Noise limits our ability to communicate. If there were no noise, we could communi-

cate messages to the outer limits of universe using finitely small amount of power.

This has been known since the early days of radio. However, the theory that de-

scribes noise and the effects of noise on the transmission of information was not

developed until 1940’s by people like Rice[1944], Shannon [1948] and Wiener [1949].

1



1.1 Historical Perspective

A time chart showing the historical development of communication is given in the

table below

Gigabit
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20101900 time line
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Figure 1.1: Evolution of communication technology.

Just for the interest a chronological order of significant milestones provided

here

• 1837 Morse perfected the Morse code.

• 1864 Maxwell discovered radio waves.

• 1875 Alexander Bell invented telephone.
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• 1901 Marconi did trans-atlantic radio transmission.

• 1918 Edwin Armstrong invented super-hytrodyne radio receiver.

• 1926 First all electric TV was developed by Philo T Farnsworth.

• 1928 Harry Nyquist provided mathematical foundation of dis-

persive comm. system.

• 1933 Armstrong developed frequency modulation scheme.

• 1937 Alec Reeved Invented of PCM.

• 1943 D. O. North Matched Filter.

• 1947 Sampling theorem

• 1948 Shannon’s ground breaking paper on information theory.

• 1962 T-1 link devised at Bell labs.

• 1985 DARPA project → foundation of internet.

Many other significantly achievements in the field of computer, optical,

satellite, wireless communications, electronics and signal processing have

contributed to the exponential rise of communication systems.

The field of communication has come a long way over the past century.

1.1.1 Digital & Analog Sources and Systems

Definition:A digital information source produces finite set of possible messages.

A typewriter is a good example of digital source. There is a finite number of char-

acters that can be emitted from the source.

Definition:An analog information source produces messages that are defined on a

continuum.

A microphone is good example of an analog source. The output voltage describes

the information in the sound and it is distributed over a continuous range of values.
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Definition:A digital communication system transfers information from a digital

source to a digital sink.

Definition:A analog communication system transfers information from a analog

source to an analog sink.

Strictly speaking, a digital signal is defined usually as a function of time that can

have only discrete set of values. If the digital signal is binary, only two values are

allowed. An analog signal is a function of time that has continuous range of values.

An electronic digital communication system usually has voltages and currents that

have a digital waveform; However it may also have analog waveforms. For example,

the information from a binary source many be transmitted to the sink by using a

sine wave of 100Hz to represent a binary 1 and a sine wave of 500Hz to represent a

binary 0. Here digital source information is transmitted to the sink by use of analog

waveform, but this is still called a digital communication system.

Digital communication system has a number of advantages.

a. Relatively inexpensive digital circuits may be used.

b. Privacy is preserved by using data encryption.

c. Greater dynamic range (the difference between largest possible and smallest

value) is possible.

d. Data from voice, video and data sources may be merged and transmitted over a

common digital transmission system.

e. In long distance systems, noise does not accumulate from repeater to repeater.

f. Error in detected data may be small, even when there is large amount of noise is

received signal.

g. Errors may often be corrected by the use of coding.

Digital communication system also has disadvantages

a. Generally more bandwidth is required than that for analog system.

b. Synchronization is required.

The advantages of digital communication systems by far outweigh its disadvantages.
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Figure 1.2: Regeneration of digital signal.

1.1.2 Classification of Signals

Deterministic/Stochastic:
Signal, generally

speaking is defined as

anything that carries

information.

Note:

A deterministic waveform can be modelled as completely specified function in time.

For example

x(t) = A · cos(ωot+ φo)

describes a waveform where, A, ωo and φo are known constants, this waveform is

said to be deterministic.

A random waveform or (stochastic waveform) cannot be completely specified as a

function of time and must be modelled probabilistically.

n ∼ N(0, σ2
n) Gaussian distribution and u ∼ U(a, b) Uniform distribution

It is evident that the signals which represent a source can not be deterministic .

For example, in a digital communication system we might send information corre-

sponding to any of the letters of english alphabets. Each letter might be represented

by a deterministic waveform, but when we examine the waveform that is emitted

from the source, we find that it is random wavefrom because we do not know exactly

which character will be transmitted. Consequently we need to design the communi-

cation system using random waveforms, and any noise that is introduced would be

described by a random waveform. This technique requires the use of probabilistic

modeling of source.

Periodic/Aperiodic:

x(t) = x(t+ T0) for − ∞ < t < ∞ and T0 > 0

Analog/Digital:
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Aperiodic

Periodic

Stochastic

Deterministic

Energy
Power

Digital

Discrete

Continuous

Analog
Signals

An analog signal x(t) can take any possible value, while digital signals are limited

to only certain pre-defined values.

Power/Energy:

A signal x(t) is defined as an Energy signal if and only if it has non-zero but finite

energy (0 < Ex < ∞).

Ex = lim
T →∞

∫ + T
2

t=−
T
2

x2(t)dt

Ex =
∫ +∞

t=−∞

x2(t)dt

A signal is defined as an Power signal if and only if it has non-zero but finite power

(0 < Px < ∞).

Px = lim
T →∞

1

T

∫ + T
2

t=−
T
2

x2(t)dt

1.1.3 Block Diagram of Communication System

Communication system can be described by the block diagram Fig. 1.3. Regardless

of the particular application, all communication systems involve three main subsys-

tems, the transmitter, the channel and the receiver. The message from the source is

represented by waveform m(t). The message is delivered to the sink is denoted by
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m̃(t). The ∼ indicates that the message received may be corrupted by noise in the

channel or there may be other impairment such as undesired filtering and undesired

nonlinearities. The message information may be in analog or digital format. It

may be audio or video or other type of information. In multiplexed systems, there

may be multiples of sources and sinks operating simultaneously. If the spectrum

of signal m(t) or m̃(t) is located around dc → f = 0. Then such signal is called

as baseband signal. The signal processing block at the transmitter conditions the

Signal
Processing

Signal
Processing Circuit

Carrier Carrier
Circuit

Transmission
Medium
(channel)

Tx Rx

noise

m(t) s(t) r(t)

n(t)

m̃(t)

Figure 1.3: General transmission system.

source for more efficient transmission. For example in analog system, the signal

processor may be an analog lowpass filter that is used to restrict the bandwidth of

m(t). In hybrid systems, the signal processor may be analog-to-digital convertor

(ADC). This produces a digital word ; more on this will follow later. The signal

processor could add parity bits to digital word to provide channel coding so that

error detection and correction can be used in the signal processor in the receiver

side to reduce or eliminate bit errors that are caused by noise in the channel.

The transmitter carrier circuit converts the processed baseband signal into a fre-

quency band that is appropriate for the transmission medium of the channel.For

example, if the channel consists of fiber optic cable, the carrier circuit converts the

baseband input to light frequencies⇒ s(t) is light. If channel propagates baseband

signal, no carrier circuit is needed and s(t) can be output of the processing unit. A

carrier circuit is needed when the operating frequency of the medium is fc ≫ 0. In

this case s(t) is called bandpass signal. For example an amplitude modulated broad-

cast. The mapping of a baseband input information waveform m(t) into bandpass

signal s(t) is called modulation . A typical bandpass signal can be represented as

s(t) = A(t)cos[ωct+ θ(t)] (1.1)
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where ωc=2πfc, if A(t)=1 and θ(t)=0, s(t) would be a pure sinusoid of frequency

fc with bandwidth 0. In the modulation process provided by the carrier circuit, the

baseband input waveform m(t) causes A(t) and/or θ(t) to change as a function of

m(t). These fluctuations in A(t) and θ(t) cause s(t) to have non-zero band-

width, more on this stuff later.

Channel may be classified as wired or wireless channels. Examples of wired channel

are twisted pair cable, coaxial cable, wave guides and fiber optic cable. Typical

examples of wireless channel are air, vacuum and seawater. The principles of digital

communication apply to all type of channels, although certain media might favour

a certain type of signalling. In general, the channel medium attenuates the signal so

that the noise level of the channel and/or the noise introduced by imperfect receiver.

The channel may contain active amplifying devices such as repeaters in telephone

systems , satellite transponders in space communication systems. These devices

are necessary to keep the signal level from noise floor.In addition the channel may

provide multipath propagation between input and output that have different delays

and attenuation characteristics, even worse the channel properties might change

from time to time. The incurring costs and practical limitations are a major moti-

vating factor for error detection and correction to be discussed in later sections.

The receiver takes the corrupted signal at the output of the channel and converts

it to the baseband channel that can be handled by the receiver baseband processor.

The baseband processor cleans up the signal and delivers the estimate of the source

information m̃(t) to the receiver.

The goal of the engineer is to design a communication system such that the signal is

transmitted to the receiver with as little deterioration as possible, while satisfying

the limited power constraints and using limited bandwidth. The deterioration in

performance of quality is measured in Bit Error Rate in short BER of the

delivered data m̃(t).
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1.2 Representation of signals

1.2.1 Some Elementary Signals

Dirac Delta Function and Unit Step Function

The dirac delta functions δ(t) is defined as

δ(t) =







∞, t = 0

0, t 6= 0
(1.2)

it is also important to note that

∫ +∞

t:−∞

δ(t)dt = 1

The Dirac delta function is not a true function, so it is said to be a singular function.

Some important properties of the δ function are presented below

Sifting: The sifting property of the δ function is

∫ +∞

t:−∞

x(t)δ(t− t0)dt = x(t0)

Some additional properties

δ(at) =
1

|a|δ(t)

δ(−t) = δ(t)

x(t) · δ(t) = x(0)δ(t)

δ(t) =
du(t)

dt

Definition The unit step function u(t) is

u(t) =







1 , t > 0

,

0 , t < 0
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Figure 1.4: Impulse, unit step and ramp functions

By definition δ(t) is zero everywhere except for t = 0, the dirac delta function is

related to the unit step function as

u(t) =
∫ t

τ :−∞

δ(τ)dτ

du(t)

dt
= δ(t)

Rectangular and Triangular Pulses

The following waveforms frequently occur in communication, special symbols are

defined

Definition Let Π(·) denotes a single rectangular pulse. Then

Π(
t

T
) =







1, |t| ≤ T

2

0, |t| ≥ T

2

Λ(
t

T
) =







1 − |t|
T
, |t| ≤ T

0, |t| ≥ T
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-T -T
2
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Figure 1.5: Rectangular & Triangular functions.

Some other signals commonly found in literature.

-2Ts -Ts 0 Ts 2Ts

0

0.5

1

(a) Rectangular pulse function

-2Ts -Ts 0 Ts 2Ts

−1

0

1

(b) Sawtooth pulse function
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1.2.2 Properties of Systems & Convolution

The convolution operation is used to evaluate the output of a linear system.

Definition: The convolution of a waveform x1(t) with a waveform x2(t) to produce

a third waveform x3(t)

x3(t) = x1(t) ∗ x2(t) =
∫ +∞

τ :−∞

x1(τ)x2(t− τ)dτ (1.3)

The convolution is also referred to as convolution sum or superposition sum. Upon

careful observation we see that t is the parameter of output function and τ is the

variable of integration. The convolution sum for discrete case is

x3[k] = x1[k] ∗ x2[k] =
+∞∑

n:−∞

x1[n]x2[k − n] (1.4)

The convolved output is obtained by

1. Time reversal of x2 to obtain x2(−τ).

2. Time shifting of x2 by t to obtain x2(t− τ).

3. Multiplying this result by x1 to form the integrand x1(τ)x2(t− τ)

More details in examples
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t

x1(τ)

0

x2(−τ)

τ-2

t = 0
t

t

x1(t)

t

x2(t)

0 2

∗
-1 +1

-1

x2(1− τ)

-2 -1

-2 -1

τ

t < −1

τ

-1 < t < +1

-3

1 < t < +3

x2(t − τ)

x2(t − τ)

-1 +1

-2 -1

x2(t − τ)
t > +3

τ

τ

x3(t) =
∫ +∞
−∞ x1(τ)x2(t − τ)dτ

x3(t)

Figure 1.6: Convolution illustrated
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Convolve the signals x1(t) and x2(t) as illustrated in the figure below

t

t+10 +2

w2(t)

+10 +2 +3 +4

+10 +2 +3 +4

+1 +2 +3 +4-2 0-1

-1-2

t

t

B

A
w1(t)

w1(t)

w(t)

Solution:

w(t) =







, 0 ≤ t < 2

AB ,+2 ≤ t < +4

, 4 ≤ t < 6
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Convolve the signals x1[k] and x2[k] as illustrated in the figure below

−2 −1 0 1 2 3 4

0

1

2

3

x1[k]

−2 −1 0 1 2 3 4

0

1

2

3

x2[k]

−2 −1 0 1 2 3 4 5 6

0

5

10

15

x3[k]

Figure 1.7: Convolution illustrated

Solution: This problem can be verified from the examples studied earlier.
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1.2.3 Fourier transforms and properties

Spectrum is another (and very effective) way of looking at time domain waveforms.

Frequency

Time

Magnitude

Definition: Spectrum is the frequency domain representation of time domain sig-

nals. Fourier transform is a general method of finding frequencies of a waveform.

X(jω) = F[x(t)] =
∫ +∞

t=−∞

[x(t)]e−jωtdt (1.5)

where F[·] denotes the Fourier transform of [·] and ω is the frequency parameter

with units radians/sec. This defines the term frequency which is a parameter in the

Fourier transform.

X(jω) is called the two sided spectrum of x(t), because both positive and negative

frequency components are obtained by a mathematical calculation and do not have

physical interpretation.

Since the base of FT is complex exponential e−jωt, X(jω) is a complex function of

frequencies. X(jω) may be decomposed into two real functions Xr(jω) and Xi(jω)

such that

X(jω) = Xr(jω) + jXi(jω) (1.6)

Which is identical to writing a complex number is cartesian system, the equivalent

polar representation would be

X(jω) = |X(jω)|ej∠θ(ω) (1.7)
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that is

|X(jω)| =
√

X2
r (jω) +X2

i (jω) and ∠θ(ω) = tan−1

(

Xi(jω)

Xr(jω)

)

(1.8)

This is called magnitude-phase form or polar form. To determine whether cer-

tain frequency components are present, one would examine the magnitude spectrum

|X(jω)|.
The time domain waveform can be calculated from the spectrum by using the inverse

Fourier transform.

x(t) =
∫ +∞

ω=−∞

X(jω)ejωtdω

The functions x(t) and X(jω) are said to be Fourier transform pair. x(t) ❞ X(jω).

A waveform is Fourier transformable, if it satisfies both Dirichlet conditions

• Over any time interval of finite width, the function x(t) is single valued with

a finite number of maxima and minima and number of discontinuities if any

is finite.

• x(t) is absolutely integrable. That is

∫ +∞

t=−∞

|x(t)|dt < ∞

A weaker sufficient conditions for the existence of the Fourier transform is

Ex =
∫ +∞

t=−∞

|x(t)|2dt < ∞

Important Fourier transform pairs

Fourier Transform of Cosine wave

X(jω) =
∫ +∞

−∞

ej(ωct+φ) + e−j(ωct+φ)

2
e−jωtdt =

1

2
ejφ

[∫ +∞

−∞

e−j(ω−ωc)t + e−j(ω+ωc)tdt
]

=
1

2
ejφ[δ0(ω − ωc) + δ0(ω + ωc)]
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Type Analysis equation Synthesis equation

Exponential

Form

ck =
1

T 0

∫

T0

x(t)e−jω0tdt x(t) =
+∞∑

k=−∞

cke
jω0t

Trigonometric
Series

ak =
2

T0

∫

T0

x(t) cos kω0tdt

bk =
2

T0

∫

T0

x(t) sin kω0tdt

x(t) =
a0

2
+

∞∑

k=1

(ak cos kω0t

+ bk sinω0t)

Fourier
integral

X(ω) =
∫ +∞

t=−∞

x(t)e−jωtdt x(t) =
∫ +∞

ω=−∞

X(ω)ejωtdω

Discrete time
Fourier trans-
form

X(ejΩ) =
+∞∑

n=−∞

x[n]e−jkω0n x[n] =
∫ π

−π
X(ejΩ)e−jΩn

Discrete
Fourier
transform

X[k] =
N−1∑

n=0

x[n]e−j 2πnk
N x[n] =

1

N

N−1∑

k=0

X[k]ej 2πnk
N

Table 1.1: Standard pairs of Fourier transforms.

-ωc 0 ωc
0

0.2

0.4

0.6

|X(jω)|

Figure 1.8: The magnitude spectrum of a sinusoidal signal.

Fourier Transform of Rectangular Pulse

X(jω) =
∫ +Ts

2

−Ts
2

1e−jωtdt =
ejωTs/2 − ejωTs/2

jω

= Ts
sin(ωTs/2)

ωTs/2
= Ts · sinc(

ωTs

2
) (1.9)
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(b) Fourier Transform of Sinc(·) function is a Rect(·) Function

Figure 1.9: Rect() and Sinc() are reciprocal functions.
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1.2.4 Properties of Fourier transform

Linearity: If

x(t) ❞ X(jω) and y(t) ❞ Y (jω) then

ax(t) + by(t) ❞ aX(jω) + bY (jω)

This can be verified directly from the definition of Fourier transform.

Time Shift: If

x(t) ❞ X(jω) then

x(t− t0) ❞ ejωt0X(jω)

We verify this property

x(t) =
∫ +∞

ω=−∞

X(jω)ejωtdω

By replacing t with t− t0, we obtain

x(t− t0) =
∫ +∞

ω=−∞

X(jω)ejω(t−t0)dω

=
∫ +∞

ω=−∞

e−jωt0X(jω)ejωtdω

which is

F{x(t− t0)} = e−jωt0X(ω)

Delay / advance in time on a signal introduces a phase shift to its transform

namely e−jωt0 , which is a linear function of ω.

Symmetry: Spectral symmetry of a real signal. If x(t) is real then

X(−jω) = X∗(jω)

Proof: from the definition of Fourier transform

X(−jω) =
∫ +∞

t=−∞

x(t)ejωtdt

X∗(ω) =
∫ +∞

t=−∞

x∗(t)ejωtdt
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But since x∗(t) = x(t), the right hand side matches the left hand side. An other

important consequence of this proof is that for the spectrum of a real signal x(t),

the magnitude spectrum is even about origin i.e. f = 0

|X(−jω)| = |X(ω)|
θ(−ω) = −θ(ω)

Time Reversal:

x(−t) ❞ X(−jω)

Proof in the next property.

Scaling:

F[x(at)] =
∫ +∞

t=−∞

x(at)e−jωtdt

letting t1 = at as assuming a > 0 we obtain

F[x(at)] =
∫ +∞

t1=−∞

1

a
x(t1)e

−j2π(f/a)t1dt1 =
1

a
X

(

f

a

)

For a < 0 we have

F[x(at)] =
∫ +∞

t1=−∞

−1

a
x(t1)e

j2π(f/a)t1dt1 =
1

|a|X
(

f

a

)

Thus for a < 0 or a > 0 we get

x(at) ❞
1

|a|X
(

f

a

)

Convolution

x1(t) ∗ x2(t) ❞ X1(jω) ·X2(jω)

This equation is referred to as convolution theorem, which states that convolution

in time domain becomes multiplication in frequency domain. Proof is not discussed

here.

22



Parseval’s Theorem

∫ +∞

t=−∞

x(t)x∗(t)dt =
∫ +∞

ω=−∞

X(jω)X∗(jω)dω

Proof:

E =
∫ +∞

t=−∞

|x(t)|2dt =
∫ +∞

ω=−∞

|X(jω)|2dω
∫ +∞

t=−∞

x(t)x
∗(t)dt =

∫ +∞

t=−∞

[∫ +∞

ω=−∞

X(jω)ejωtdω
]

x∗(t)dt

=
∫ +∞

t=−∞

∫ +∞

ω=−∞

X(jω)x∗(t)ejωdωdt

interchanging the order of integration between ω and t

∫ +∞

t=−∞

x(t)x∗(t) =
∫ +∞

ω=−∞

X(jω)
[∫ +∞

t=−∞

x(t)e−jωtdt
]∗

dω

Additional Properties

If x(t) is real and

x(t) = xe(t) + xo(t)

where xe(t) and xo(t) are even and odd components of x(t), Thus

x(t) ❞ X(jω) = A(jω) + jB(jω)

X(−t) = X∗(jω)

xe(t) ❞ ℜe{X(jω)} = A(jω)

xo(t) ❞ ℑmg{X(jω)} = jB(jω)
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Time Frequency Duality
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1.3 Sampling of Analog Signals

Sampling theorem is one of the most useful theorems it applies to digital communi-

cation and processing systems.

Theorem: Any bandlimited signal can be accurately reconstructed it is sam-

pled at frequency which is atleast twice the maximum frequency of the signal.
Not true for bandpass

signals.

Note:

Fs ≥ 2Fmax

Sampling and Quantization is an must process or digital processing and transmis-

sion of signal. A simplistic illustration of the process is presented below:
For further detail refer

Couch section 2.7

Extra Reading
Sampling is

in fact multiplication of our continuous time domain signal with periodic impulses.

The switching devices yields instantaneous values if ∆t → 0 and we have

xs(t) = s(t) · x(t)
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Figure 1.11: Illustration of sampling process in time domain.
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here s(t) is defined as

s(t) =
+∞∑

k:−∞

δ(t− kTs)

which is good for theoretical considerations and practically we have

s(t) =
+∞∑

k:−∞

Π

(

t− kTs

Ts

)

The ideal sampled wave is then

xs(t) , x(t)sδ(t)

= x(t)
+∞∑

k:−∞

δ(t− kTs)

=
+∞∑

k:−∞

x(kTs)δ(t− kTs)

To obtain the corresponding spectrum Xδ(f) = F[xs(t)]

Xs(jω) =
+∞∑

n:−∞

xa(nTs)e
−jnωTs

Another expression for X(jω) can be determined by noting that the Fourier trans-

form of s(t) is

S(jω) =
2π

T

+∞∑

k:−∞

δ(ω − kωs)

where ωs = 2π/Ts is sampling frequency in radians per second. Therefore

X(ejω) =
1

2π
Xa(jω) ∗ Sa(jω) =

1

T s

+∞∑

k:−∞

Xa(jω − jkωs)

The original analog signal x(t) can be represented as

x(t) =
+∞∑

n:−∞

an
sin{πfs(t− (n/fs))}
πfs[t− (n/fs)]
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where

an = fs

∫ +∞

−∞

x(t)
sin{πfs(t− (n/fs))}
πfs[t− (n/fs)]

dt

The graphical illustration of this process is illustrated in fig. 1.13.

(a) Continuous waveform and its spectrum

LPF

(b) Sampled waveform and its spectrum
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Figure 1.12: Ideal sampling illustrated
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Figure 1.13: Reconstruction of actual signal from sampled values through interpo-
lation.
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Chapter 2
Analog Communication

Outline

In this chapter the most commonly used analog modulation schemes are

discussed. The objective of this study is to introduce the fundamental

concepts of analog modulations schemes. A detailed discussion on hardware

design is beyond the scope of this course. Interested students are referred

to text books like Lyon Couch and Simon Haykin. The objective of this

chapter is familiarize students with the following

• Amplitude modulation and demodulation.

• Phase modulation and demodulation.

• Frequency modulation and demodulation.

• Analog systems.
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Basic Terminology

• Modulation is defined as a process by which some characteristic

of a carrier is varied in accordance with the modulating wave.

• The message signal m(t) is known as the Modulating signal.

• The carrier signal c(t) is known as the Modulated signal.

• At the receiver the original signal is recovered through demodulation

which is the inverse of the modulation process.

The word ‘Modulation’

has multiple techni-

cally correct defini-

tions: Modulation the

is processing (condi-

tioning) of data to

make it suitable for

transmission over any

physical transmission

medium.

Note:
In this section we briefly touch up the analog schemes used for modulation of analog

message.

2.1 Analog modulation schemes

2.1.1 Amplitude Modulation

Consider a sinusoidal carrier wave c(t) defined as

c(t) = Accos(2πfct) (2.1)

For further detail refer

Couch section 5.1-3

Haykin section 2.2.

Extra Reading
where the peak valueAc is the carrier amplitude and fc is the carrier frequency

. The phase of the carrier is not considered thus far. Let m(t) denote the baseband

message signal. Amplitude modulation is defined as a process in which amplitude

of the carrier wave c(t) is varied linearly with the message signal m(t). The time

domain representation of an amplitude modulated signal is defined as

s(t) = Ac

[

1 + kam(t)
]

︸ ︷︷ ︸

cos(2πfct) (2.2)

where ka is a constant called amplitude sensitivity/modulation index of the mod-

ulator. The amplitude of the time function multiplying cos(2πfct) is called the
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[1 + kam(t)]

f-fc
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-fc+B-fc-B fc+Bfcfc-B
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2

Ac cos(2πfct)

Ac[1 + kam(t)] cos(2πfct)

f

|M(f)|

Figure 2.1: Mathematical block diagram of Standard Double Sideband
Amplitude Modulation.

envelope of the AM wave s(t). This gain can be expressed equivalently as

a(t) = Ac|1 + kam(t)| (2.3)

Two cases of particular interest arise depending on the magnitude of kam(t), com-

pared to unity. For case 1, we have

|kam(t)| ≤ 1, for all t (2.4)

in this condition, the term 1+kam(t) is always non-negative. This can be expressed

as

a(t) = Ac[1 + kam(t)] for all t (2.5)

for the other case

|kam(t)| > 1, for some t (2.6)

For the case (2.4) system is a under modulated system and (2.6) is called over

modulated system.The time domain representation of under/over modulated sig-

nal is illustrated in fig. 2.2. In Fourier domain the modulated signal s(t) can be
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expressed in terms of modulating signal m(t) as

S(ω) =
Ac

2
{δ(ω − ωc) + δ(ω + ωc)}

+
KaAc

2
{M(ω − ωc) +M(ω − ωc)} (2.7)

where S(ω) and M(ω) are the spectra of the modulated carrier and modulating

signal respectively.

The graphical representation of standard DSB and DSB with suppressed carrier

in time and frequency domain is illustrated in fig. 2.3.
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(e) amplitude modulated transmitted signal s(t) with (ka = 1.25).

Figure 2.2: Illustration of under/over modulated amplitude modulation
process.
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An important parameter used to define the level of modulation is commonly

known as ‘modulation index’ . The modulation index may be defined as

ka =
Amax − Amin

Amax + Amin

(2.8)

1. The percentage modulation is less than 100%, so as to avoid envelope distor-

tion.

2. The message bandwidth, W , is small compared to the carrier frequency fc, so

that the envelope a(t) may be visualized satisfactorily.
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Figure 2.4: Power distribution between subcarrier and sideband with DSBAM.

In AM, the carrier term does not carry any information and hence the carrier

power is wasted

s(t) = Ac cos 2πfct
︸ ︷︷ ︸

carrier

+m(t) cos 2πfct
︸ ︷︷ ︸

sidebands

(2.9)

where carrier power Pc is the mean square value of Ac cos 2πfct which is A2
c/2. The

side power is the power of m(t) cos 2πfct which is Ps = m2(t)/2. The sideband power

is the useful power and the carrier power is the wasted power. The efficiency of the

system can be calculated as

η =
Useful power

Total power
=

Ps

Ps + Pc

=
m2(t)

A2
c +m2(t)

× 100% (2.10)
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for a special case of single tone modulation i.e.

m(t) = µA cos 2πfct and m2(t) =
µ2A2

2

hence

η =
µ2

2 + µ2
× 100% (2.11)

with condition that 0 ≤ µ ≤ 1. It can be seen that η increases monotonically with

µ and ηMax occurs at µ = 1 for which ηMax=33%.

Variants of AM

There exist several variants of amplitude modulation which offer bandwidth and

power efficiency of transmission system.

Double-sideband suppressed-carrier(DSBSC)

The mathematical expression for DSBSC is defined as

s(t) =c(t)m(t)

=Ac cos(2πfct)m(t) (2.12)

The modulated signal undergoes a phase reversal whenever message signal crosses

zero. The envelope of the DSBSC is different from the actual message signal as

illustrated in Fig. 2.3.

Single sideband(SSB)

Standard amplitude modulation and DSBSC modulation are wasteful of bandwidth

because they both require bandwidth equal to twice the message bandwidth. How-

ever using the fact that upper and lower sidebands are uniquely related to each other

by virtue of symmetry about carrier frequency.

s1(t) =Ac[1 + kam(t)] cos(2πfct)

s2(t) =Ac[1 − kam(t)] cos(2πfct)
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subtracting s2(t) from s1(t) we have

s(t) =s1(t) − s2(t)

2kaAc cos(2πfct)m(t) (2.13)

The detailed discussion on generation of these special AM signals is not pursued

here. The graphical illustration of these signals is presented in Fig. 2.5.
TV broadcasts use an-

other variant of AM

known as Vestigial

sideband AM
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Figure 2.5: Spectral representation of DSB-SC and SSB amplitude modulated sig-
nals.

Generation of AM signal

There exist a number of possible devices which can AM modulate the incoming

signal for example square law and switching modulator. In the following we just

discuss non-linear modulation square law modulator briefly.

This modulator consists of a summing device adding up the carrier and the

modulating waves, a nonlinear element and a bandpass filter .

The sum of the modulating and modulated signals is applied to a nonlinear device

such as a (suitably biased) diode. The outcome of the diode can be defined as

v2(t) = a1v1(t) + a2v
2
1(t) (2.14)
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where a1 and a2 are constant. The input voltage signal v1(t) is the sum of the carrier

wave and the modulating signal

v1(t) = Accos(2πfct) +m(t) (2.15)

Therefore rewriting v2(t) in terms of v1(t) the output signal is

v2(t) = a1Ac

[

1 +
2a2

a1

m(t)

]

cos(2πfct)

︸ ︷︷ ︸

+ a1m(t) + a2m
2(t) + a2A

2
ccos

2(2πfct) (2.16)

Demodulation of AM signal

An envelope detector is a simple and yet highly efficient device. This device is

suitable when modulation index is less than 100%. Ideally an envelope detector

produces an output signal that follows the envelope of the input waveform exactly.

The circuit diagram of an envelope detector is illustrated in Fig.2.6.

D

C R
VoutVin

Figure 2.6: The electrical schematic of a simple amplitude demodulator (envelope
detector).

The signal can be demodulated using the square law modulator technique. Once

again consider the transfer characteristics of nonlinear device

v2(t) = a1v1(t) + a2v
2
1(t) (2.17)

where v1(t) and v2(t) are the input and output voltages, respectively and a1 and a2.
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When such device is used to demodulation of an AM signal, at its input we have

v1(t) = Ac[1 + kam(t)] cos(2πfct) (2.18)

substituting (2.18) in (2.17) we get

v2(t) = a1Ac[1 + kam(t)] cos(2πfct)

+
1

2
a2A

2
c [1 + 2kam(t) + k2

am
2(t)][1 + cos(4πfct)] (2.19)

where desired signal is a2A
2
ckam(t) can be obtained through a low pass filter, however

another interfering term
1

2
a2A

2
ck

2
am

2(t) will give rise to inband distortion.

Representation of FM and PM signals

Phase modulation (PM) and frequency modulation (FM) are special cases of angle

modulated signalling. In this kind of signalling the complex envelope is

g(t) = Ace
jθ(t) (2.20)

Here the real envelope |g(t)|=Ac is a constant and the phase θ(t) is a linear function

of the modulating signalm(t). However, g(t) is nonlinear function of the modulation.

The resulting angle-modulated signal is defined as

s(t) = Ac cos[ωct+ θ(t)] (2.21)

For PM, the phase is directly proportional to the modulating signal that is

θ(t) = Dpm(t) (2.22)

where the proportionality constant Dp is the phase sensitivity of the phase mod-

ulator, having units of radians per volt.
mp and mf is the mod-

ulating message for

phase and frequency

modulation respec-

tively.

Note:
For FM, the phase is proportional to the

integral of m(t) so that

θ(t) = Df

∫ t

τ=−∞

m(τ)dτ (2.23)
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where the frequency deviation constant Df has units of radians/volt-second.

We see that if we have PM modulated signal mp(t), there is also FM on the signal,

corresponding to a different modulation waveshape that is given by

mf (t) =
Dp

Df




dmp(t)

dt



 (2.24)

where subscripts f and p denote frequency and phase, respectively. Similarly, for

an FM signal modulated mf (t), the corresponding phase modulated signal is

mp(t) =
Df

Dp

∫ t

−∞

mf (σ)dσ (2.25)

PM circuit may be used the synthesize an FM circuit by inserting an integrator in

cascade with the phase modulator input. Direct PM circuit is realized by passing

an unmodulated sinusoidal signal through a time-varying circuit which introduces a

phase shift that varies with the applied modulating voltage.

Definition: If a bandpass signal is represented by

s(t) = R(t) cos(ψ(t)) (2.26)

where ψ(t)=ωct+θ(t), then the instantaneous frequency of s(t) is

fi(t) =
1

2π
ωi(t) =

1

2π

[

dψ(t)

dt

]

= fc+
1

2π

[

dθ(t)

dt

]

= fc+
1

2π
Dfm(t)
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Integrator
Phase modulator
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mp(t)mf(t) gain=
Df
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s(t)
fc

s(t)
fc

mp(t) mf (t)gain=Dp

Df

Figure 2.7: Interconnection of FM and PM signal generation processes.

2.1.2 Phase Modulation

A phase modulated signal may be expressed as
For further detail refer

Couch section 5.5

Haykin section 2.6.

Extra Reading

s(t) = Accos[θ(t)] (2.27)

Ac is a constant carrier amplitude and θ(t) is varied by message signal m(t). The

mathematical form of this variation is determined by the type of angle modulation

of the interest. The change in frequency over certain duration ∆t depends on change

in phase

f∆t(t) =
θ(t+ ∆t) − θ(t)

2π∆t
(2.28)

Instantaneous frequency of the angle-modulated wave s(t)

fi(t) = lim
∆t→0

f∆t(t)

= lim
∆t→0

[

θ(t+ ∆) − θ(t)

2π∆t

]

=
1

2π

dθ(t)

dt
(2.29)
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The phase modulated signal may be conceived as a rotating phasor of length Ac and

angle θ(t). In the case of unmodulated carrier the angle θ(t) is

θ(t) = 2πfct+ φ (2.30)

the phasor rotates with a constant angular velocity equal to 2πfc.
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Figure 2.8: Illustration of phase modulated signal.

2.1.3 Frequency Modulation

The FM wave s(t) is defined by
For further detail refer

Couch section 5.6

Haykin section 2.7.

Extra Reading

s(t) = Accos

[

2πfct+ 2πkf

∫ t

0
m(t)dt

]

(2.31)

is a nonlinear function of the modulating signal m(t). Hence it is a non-linear

modulation scheme. Consequently there does not exist a simple relation between
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FM wave and its spectrum. For analysis it is convenient to assume that m(t) is a

simple sinusoidal signal

m(t) = Amcos(2πfmt) (2.32)

The instantaneous frequency of the resulting FM wave equals

fi(t) = fc + kfAmcos(2πfmt)

= fc + ∆fcos(2πfmt) (2.33)

where ∆f is the frequency deviation , representing the maximal departure from

the instantaneous frequency of the FM wave from the carrier frequency fc .

The deviation of the frequency is proportional to the amplitude of the modulating

wave.

m(t)

s(t)

fi(t)
t

t

t

vp

fc+∆f

fc+∆f

fc

Ac

Figure 2.9: Illustration of frequency modulation of a sinusoidal signal.
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Redefining the argument θ(t) of the FM wave i.e.

θ(t) = 2π
∫ t

0
fi(t)dt

= 2πfct+
∆f

fm

sin(2πfmt) (2.34)

The ratio of the frequency deviation ∆f to the modulation frequency fm is commonly

known as the modulation index of the FM wave.

β =
∆f

fm

(2.35)

The spectrum representation of the FM modulated signal is presented in Fig. 2.10

ffc

BT

Figure 2.10: Spectrum of an FM modulated signal.

The spectral bandwidth of the modulated signal is directly proportional to the

modulation index.

Salient Features

• The envelope of the FM wave is a constant, so the average power of such

modulated signals is also constant.

• FM modulated signals are more immune to additive noise since the message

is not modulated on the amplitude of the carrier.

Generation of FM signal

FM signal is generated through either direct or indirect modulation of the carrier
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signal. In direct modulation scheme the carrier frequency is controlled directly

by the modulating signal where as in the indirect method of producing frequency

modulation, the modulating waves are first used to produce a narrow band FM wave

and frequency multiplication is next used to increase the frequency deviation to a

desired level.

s1(t) = A1cos[2πf1t+ φ1(t)] (2.36)

where f1 is the carrier frequency and A1 is the carrier amplitude. The angular

argument φ1(t) is related to m(t) as

φ1(t) = 2πk1

∫ t

0
m(t)dt (2.37)

with k1 being frequency sensitivity index, assume the frequency variations are small

we have

cos[φ(t)] = 1

sin[φ(t)] ≈ φ(t) (2.38)

using this approximation the s1(t) can be expressed

s1(t) ≈ A1cos(2πf1t) − A1sin(2πf1t)φ1(t)

= A1cos(2πf1t) − 2πk1A1sin(2πf1t)
∫ t

0
m(t)dt (2.39)

which defines a narrowband FM wave. The next step in generating in-direct FM

signal generation is frequency multiplication. A frequency multiplier is a non-linear

device (such as diode or transistor) followed by a bandpass filter. The non-linear

device is assumed to be memoryless. The input-output relation of a memoryless

nonlinear device is defined as

s2(t) = a1s1(t) + a2s
2
1(t) + · · · + ans

n
1 (t) (2.40)

Performing the expansion in (2.40) we find that s2(t) has a dc component and n dif-

ferent frequency components (f1, 2f1, · · · , nf1) and frequency deviations (∆f1,2∆f1,

· · · , n∆f1). The values of ∆f1 is determined by frequency sensitivity k1. The FM
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signal can be obtained by

1. Passing the FM wave centred at the carrier frequency nf1 and with frequency

deviation n∆f1.

2. Suppressing all other FM spectra.

Integrator
signal

message Narrowband
Phase

Modulator

Frequency
multiplier

LO

Signal
FM

Wideband

Figure 2.11: The process of indirect FM signal generation.

VCO

∂m(t)
∂t

Figure 2.12: The simplified design of an FM modulator.

2.2 Phase Lock Loop

The phase lock loop is an essential component of almost all modern communication

systems.
For further detail refer

Couch section 4.4

Haykin section 2.14

Extra Reading
It is basically a negative feedback loop which consists of multiplier ,

a low pass filter and a voltage controlled oscillator (VCO) . A block dia-

gram structure of PLL is illustrated in the Fig. 2.13.
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Low pass

Filter

Voltage
Controlled
Oscillator

r(t)

e(t)s(t) v(t)

Figure 2.13: The block diagram of PLL.

Operation: Assuming the VCO is tuned such that when control voltage is zero,

two conditions are satisfied (1) frequency of VCO is precisely set as unmodulated

carrier fc and (2) VCO output has 90◦ phase-shift with respect to the unmodulated

carrier.

If FM modulated signal applied to PLL is defined as

s(t) = Ac sin[2πfct+ φ1(t)] (2.41)

with modulating signal defined as

φ1(t) = 2πkf

∫ t

0
m(t)dt (2.42)

where kf is the frequency sensitivity of the frequency modulator. Let the VCO

output be defined as

r(t) = Av cos[2πfct+ φ2(t)] (2.43)

with a control voltage v(t) applied to VCO we have

φ2(t) = 2πkv

∫ t

0
v(t)dt (2.44)

where kv is the sensitivity of the VCO measure in hertz per volt. The incomming

FM signal s(t) and the VCO output r(t) are applied to the multiplier producing the

following

46



• A high frequency component represented by

kmAcAv sin[4πfct+ φ1(t) + φ2(t)]

• a low frequency component

kmAcAv sin[φ1(t) − φ2(t)]

with km is the multiplier gain measure in volt−1. The high frequency component

can be eliminated by low pass filtering, thus the only component left is

e(t) = kmkvAcAv
︸ ︷︷ ︸

k0

sin[φe(t)] (2.45)

where sin(φe(t)) ≈ φe(t) which accurate to within 4% for φe(t) less than 0.5 rad, km

are the multiplier gain, kv is the frequency sensitivity of VCO and Av and Ac, are

amplitudes of VCO and carrier signal respectively, φe(t) is defined as

φe(t) = φ1(t) − φ2(t)

= φ1(t) − 2πkv

∫ t

0
v(t)dt (2.46)

with the output of the low pass filter v(t) defined as

v(t) =
∫ +∞

−∞

φe(τ)h(t− τ)dτ (2.47)

with h(t) being the impulse response of the low pass filter. The phase error φe(t) is

related to input phase φ1(t) by integro-differential equation.

dφe(t)

dt
=
dφ1(t)

dt
− 2πk0

∫ +∞

τ=−∞

sin[φe(τ)]h(t− τ)dτ

dφ1(t)

dt
=
dφe(t)

dt
+ 2πk0

∫ +∞

τ=−∞

sin[φe(τ)]h(t− τ)dτ (2.48)
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Using Laplace transform properties for simple derivation we can write the transfer

function of the system as

sφ1(s) = sφe(s) + 2πk0φe(s)H(s)

φe(s) =
φ1(s)

1 + 2πk0
H(s)

s
︸ ︷︷ ︸

L(s)

(2.49)

The output of the control system v(t) can be expressed in Laplace domain as

V (s) =
2πk0

2πkv

φe(s)H(s). (2.50)

By using the definition of φe(s) from (2.49) we can express output signal as

V (s) =
k0

kv

φ1(s)

1 + 2πk0
H(s)

s
︸ ︷︷ ︸

L(s)

H(s)

= 2πk0sφ1(s)
L(s)

1 + L(s)
(2.51)

where L(s) is the open loop gain. Now using the fact that the gain of LPF is large

in the frequency band of our interest therefore the approximation

L(s)

1 + L(s)
≈ 1 (2.52)

is valid and the output signal can be finally expressed as

V (s) =
1

2πkv

sφ1(s) (2.53)

and finally corresponding time-domain relation is

v(t) ≈ 1

2πkv

dφ1(t)

dt
(2.54)

48



and φ1(t) is related to the modulating wave m(t)

v(t) =
kf

kv

m(t) (2.55)

That is the output v(t) of the phase-locked loop is approximately the same except

for the scale factor as original message signal m(t) and the frequency demodulation

is accomplished.

2.3 Applications of PLL

The following diagrams illustrate various applications of PLL in general communi-

cation systems

PD

PM output

Demodulated

Demodulated

FM output

Demodulated

AM output

VCO

F(s)

LPF

input signal
∼

dθi
dt

π
2

∼ m(t)

∼ θi

Figure 2.14: Application of PLL as FM,PM and AM demodulator.
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signal
PD

+ +
++

F(s)
VCO

offset frequency

Modulated output

input
PM modulation

input
FM modulation

Reference
1
P

1
N

fR

fs

vFM (t)vPM (t)

fo=N
P

fR+fS

Figure 2.15: Fractional frequency synthesizer with FM and PM modulation.

Example

Consider that we have a base LO operating at 1 MHz. Design a frequency

synthesizer to generate a reference clock of 133.5 MHz.

2.3.1 Costas Loop

It is well known technique for demodulating double sideband amplitude modulation

with suppressed carrier. The schematic diagram
For further detail refer

Couch section 5.4

Proakis section 6.4.

Extra Reading
is illustrated in fig. 2.16. Let the

received RF signal be defined as

r(t) = Acm(t) cos(2πfct+ φ) + n(t) (2.56)

is multiplied by cos(2πfct+ φ̄) and sin(2πfct+ φ̄) which is derived from the output

of the VCO. The In-phase and Quadrature-phase products are

yI(t) = [Acm(t) cos(2πfct+ φ) + nI(t) cos(2πfct) − nQ sin(2πfct)] · cos(2πfct+ φ̄)

=
Ac

2
m(t) cos ∆φ+

1

2
[nI cos φ̄+ nQ sin φ̄]

+ double frequency components (2.57)

yQ(t) = [Acm(t) cos(2πfct+ φ) + nI(t) cos(2πfct) − nQ sin(2πfct)] · sin(2πfct+ φ̄)

=
Ac

2
m(t) sin ∆φ+

1

2
[nI cos φ̄− nQ sin φ̄]

+ double frequency components (2.58)
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where ∆φ=φ− φ̄
Most common applica-

tion Costas loop carrier

recovery in DSB SC

demodulation.

Note:
. The double frequency terms are eliminated by the LPFs following

the mixer.

An error signal is generated by multiplying the In-phase and Quadrature-

phase outputs after LPFs.

e(t) = yI(t) × yQ(t)

=
A2

c

4
m2(t) sin 2∆φ

+
Ac

4
[nI(t) cos φ̄+ nQ(t) sin φ̄] sin ∆φ

+
Ac

4
[nI(t) sin φ̄− nQ(t) cos φ̄] cos ∆φ

+
1

4
[nI(t) cos φ̄+ nQ(t) sin φ̄][[nI(t) sin φ̄− nQ(t) cos φ̄]]

This error signal is filtered by the loop filter whose output is the control voltage

driving the VCO.
The factor sin(2φe)

implies more robust

error tracking.

Note:

VCO

I−arm

Q−arm

input
rf singal

demodulated
data stream

F (s)

m(t) sin(θi − θ0)

-2 sin(ωc + θ0)

m(t) cos(θi − θ0)

2 cos(ωc + θ0)

π
2

m(t) sin(ωc+θi) 1
2

sin(2θe)

Figure 2.16: Block diagram of Costas Loop.

2.4 Mathematical modeling of Bandpass RF sig-

nals

Real world transmitted signals are all real valued, but in literature we often find the

reference to Quadrature modulation techniques which exploits the orthogonality
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feature of Quadrature modulation.

LPF

LPF
si(t)

cos(2πfct)

sq(t)

cos(2πfct)

-sin(2πfct)
-sin(2πfct)

ŝi(t)

ŝq(t)

uRF(t)=ℜ{s(t)ej2πfct}

Figure 2.17: Block diagram Tx Rx RF chain for Quadrature transmission system.

By Quadrature modulation we mean that two independent signal are combined

into one complex signal as real and imaginary parts. After

transmission through RF link it is possible to separate the two signals easily.

The idea of quadrature modulation and demodulation is illustrated in the fig.2.17.

The complex continuous signal s(t) which consists of two real and imaginary com-

ponents also commonly known as inphase and quadrature components

respectively.
For further detail refer

Haykin section 6.4.

Extra Reading
The real component of the signal is multiplied with cosωct while the

imaginary component is multiplied with a − sinωct. The carrier modulated output

is defined as

uRF(t) = sI(t) cosωct− sQ(t) sinωct ⇒ ℜ{s(t)ejωct} (please verify) (2.59)

The structure of the quadrature receiver is also illustrated in the fig. 2.17. In short

the received baseband signal can be defined as

r(t) = LPF{uRF(t)e
−jωct} (2.60)

Simple derivation is provided here

r(t) = (sI(t) cosωct− sQ(t) sinωct) × (cosωct− j sinωct)

= SI(t) cosωct cosωct− jsI(t) cosωct sinωct

− sQ(t) sinωct cosωct+ jsQ(t) sinωct sinωct (2.61)
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Now using the following trigonometric identities

cosα cos β =
1

2
[cos(α+ β) + cos(α− β)] (2.62a)

sinα sin β =
1

2
[cos(α− β) − cos(α+ β)] (2.62b)

sinα cos β =
1

2
[sin(α+ β) + sin(α− β)] (2.62c)

cosα sin β =
1

2
[sin(α+ β) − sin(α− β)] (2.62d)

using (2.62) in (2.61) we obtain

r(t) = sI(t)(cos 0ωct+ cos 2ωct) − jsI(t)(sin 0ωct− sin 0ωct)

− sQ(t)(sin 2ωct+ sin 0ωct) + jsQ(t)(cos 0ωct+ cos 2ωct) (2.63)

After LPF filter residue left at the output of receiver is

r(t) = sI(t) + jsQ(t) (2.64)

This chapter is limited to a very superficial review of the analog

communication systems. You are referred to

1. An introduction to Analog and Digital Communication

by Simon Haykin

2. Digital and Analog Communication Systems by Leon W.

Couch

for further detail.

An extensive detail of Analog schemes is beyond the scope of

this course.
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Chapter 3
Fundamentals of Digital Communication

Outline

The objective of this chapter is to study a fundamental communication

system. Digital communication system is a broad topic which consists of

several fundamental concepts and due to time constraints we aim to study

only a selective set of components in this chapter. The fundamental con-

cepts covered in this chapter are

A© Data formatting E© Matched filter

B© Information & Entropy F© Channel equalization

C© Pulse shaping G© Channel Coding

D© Channel modeling H© Bit error analysis

Now having explained the baseband transmission model we can discuss the effects

of a communication system namely ISI, and relevant criteria and then comes the

question what is the optimal receiver and (sub)optimal equalizer device.

The Fig. 3.1 illustrates the simplistic block diagram of a general communication

system. The block illustrates several essential and non-essential components of a

typical transmission link. In this chapter our objective is to selectively study some

of the fundamental concepts of digital communication system and lay a strong math-

ematical foundation for advanced studies. Before we even begin to explore the basic
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Figure 3.1: Simplified structure of a general transmission systems.
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elements of communication system we would like to briefly discuss the information

theoretic aspects of data source.
For Further detail refer

Haykin section 9.2

Proakis section 12.2

Extra Reading

3.1 Information and Entropy

The total information content for a symbol m is inversely proportional to its prob-

ability p(m).

Im = log
1

p(m)
= − log p(m) (3.1)

Please note that total information contained by two messages is

I1 + I2 = − log2 p(m1) − log2 p(m2) = − log2[p(m1)p(m2)] (bits) (3.2)

The average amount of uncertainty contained by an event/a message is defined

as its entropy .

H =
M∑

m=1

p(m) log2

1

p(m)
(3.3)

Entropy of Binary Source:

For the case when M = 2 (a system with 2 symbols i.e. (0,1)) if p(1) = ρ and

p(0) = 1 − ρ then

H = ρ log2

1

ρ
+ (1−ρ) log2

1

1−ρ (3.4)

For ASCII alphabet, there exist 128 equally likely symbols therefore entropy of a

symbol is H=− log2(1/128) = 7 symbols.
Typical units of en-

tropy ‘bit’

entropy is always posi-

tive!

Note:
However in practice all of the symbols are

equally likely and statistically independent. Therefore

H =
128∑

m=1

p(m) log2

1

p(m)
< 7 bits/symbol (3.5)
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Entropy thus represents the minimum number of binary digits required per symbol

(averaged over a long sequence of symbols). The maximum possible entropy of any

source is defined as

Hmax = log2 M(bit/symbol) (3.6)

The results of these examples can be generalized as

Vocab. Size no. binary digits Symbol probability
2 1 1/2
4 2 1/4
8 3 1/8
16 4 1/16
32 5 1/32
64 6 1/64
128 7 1/128

Marbles in a Box

a. Calculate the entropy when all marbles are equally likely.

b. Calculate the entropy when there are three shades available.

Example

The following diagram illustrates the entropy for the case
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Alphabets

Alphabet Probability

A,E,I,O,T 0.9

D,H,M,N,R,S,U,W,Y 0.04

B,C,F,G,K,L,P 0.02

J,Q,V,X,Z 0.01

a. Calculate the entropy when all alphabets are equally likely.

b. Calculate the entropy when probability of alphabets is as defined in the table.

3.1.1 Shannon-Hartley Capacity Theorem

Shannon in 1949 showed that the system capacity C of a channel perturbed
For further detail refer

Sklar section 9.4

Extra Reading
by addi-

tive white Gaussian noise (AWGN) is a function of average received signal power S,

the average noise power N , and bandwidth W . The capacity relationship (Shannon-

Hartley Theorem) can be stated as

C = W log2

(

1 +
S

N

)

(3.7)

Spectral effi-

ciency is defined as
R

W
(bits/s/Hz)

for arbitrarily small

BER efficiency → C

W
.

Note:
where W is in hertz and logarithm is taken to the base 2, and channel capacity

is measured in bits/s . It is theoretically possible to transmit information over

such a channel at any rate R , where R ≤ C , with an arbitrarily small error

probability using a sufficiently complicated coding scheme. For an information rate

R > C , it is not possible to find a code that can achieve an arbitrarily small

error probability. Shannon’s work showed that the values of S, N and W set a limit

on transmission rate not on error probability. Shannon used (3.7) to graphically

illustrate a bound of achievable performance of practical systems. This plot gives

normalized channel capacity C/W in bits/s/Hz as a function of the channel SNR.

Noise power is proportional to the bandwidth

N = N0W (3.8)
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Figure 3.2: Graphical illustration of equation (3.9).

Fig.3.3 is sometimes used to illustrate the power-bandwidth trade-off inherent in

the ideal channel.

C = W log2

(

1 +
S

N0W

)

(3.9)

A related Fig. 3.2 indicates the normalized channel bandwidth W/C in Hz/bits/s

as a function of SNR in the channel. For the case where transmission bit rate is

equal to channel capacity R=C, using the following identity

Eb

N0

=
S

N

(

W

R

)

(3.10)

we can rewrite the expression (3.7)

C =
S

N0

(

N0W

S

)

log2

[

1 +

(

S

N0W

)]

C =
S

N0

log2

(

1 +
S

N0W

)(
N0W

S
)

︸ ︷︷ ︸

(1+x)1/x

(3.11)

Using the identity

lim
x→0

(1 + x)1/x = e (3.12)
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we can calculate the limiting value of Eb/N0 as follows:Let

x =
Eb

N0

(

C

W

)

=
S

N
(3.13)

then from above

C

W
= x log2(1 + x)1/x (3.14)

In the limit case, as C/W → 0, we get

Eb

N0

=
1

log2 e
= 0.693 (3.15)

or in decibels
Eb

N0

= −1.6 dB.

Important Points

• For infinite bandwidth i.e W → ∞ the ratio Eb/N0 approaches log 2 =

0.693, this value is called Shannon’s limit for an AWGN channel assum-

ing code rate of zero. This corresponds to the limiting value of channel

capacity (i.e. at W → ∞).

• The capacity boundary defined by the curve for critical bit rate R=C ,

separates the combination of the system parameters that have the po-

tential for supporting error free transmission ( R < C ), for those which

error free transmission is not possible ( R > C ).

• The diagram highlights potential trade-off among Eb/N0, R/W and the

probability of symbol error Pe. In particular the movement of the operat-

ing point along a horizontal line as trading Pe versus Eb/N0 for

a fixed R/W or the movement of the operating point along vertical line

as trading Pe versus R/W for a fixed Eb/N0.
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Figure 3.3: Graphical illustration of equation (3.7).
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3.2 Source Coding

A discrete memoryless source produces random variables. The occurrence of source

output ( alphabets ) is characterized in statistical terms. The information con-

tent of the message is H(x) . The entropy of the message is the minimal

number of bits required to store the message.

Source
Encoder

Memoryless
...ABBCDEFFEC.... ...0010111010...

Source

Discrete

There exist several ways to reduce the redundancy from the message. To construct a

mathematical model for a discrete source, we assume that each letter in the alphabet

{x1, x2, · · · , xL} has a given probability pi of occurrence.

pi = P (X = xi) 1 ≤ i ≤ L (3.16)

L∑

i=1

pi = 1 (3.17)

The process of source encoding is actually encoding of source alphabets by a se-

quence of binary digits. The measure of efficiency of source-encoding method can

be obtained by comparing the average number of binary bits per output letter from

the source to the entropy H(X).

By encoding a large number of source symbols as a block of sufficiently large size

the average number of binary digits per output letter from source can be made

arbitrarily close to entropy of the source H(x).

Suppose a DMS produces an output letter (or symbol) every Ts seconds. Each

symbol is selected from finite alphabet of symbols xi and i = 1, · · · , L occurring

with probability P (xi).The entropy of the DMS in bits per source symbol is

H(x) = −
L∑

i=0

p(xi) log2 p(xi) ≤ log2(L)

The equality hold when the symbols are equally probable. The average number of

bits per source symbol is H(x). The source rate is bits/s defined as H(x)/Ts.
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The source encoder algorithm could encode output alphabets with either fixed

or variable length.

Fixed-Length Codes

Consider a block encoding scheme that assigns a unique set of R binary digits to

each alphabet.Since there are L possible alphabets, the number of binary digits per

alphabet required for unique encoding is

R = log2 L when L is a power of 2

R = ⌊log2 L⌋ + 1 when L is not a power of 2

The code rate R in bits per alphabet is R. Since H(x) ≤ log2 L, it follows that

R ≥ H(x).

3.2.1 Variable Length Code

When alphabets are not equally likely, a more efficient encoding method is to use

variable-length code words. For example, in morse code, the alphabets that occur

more frequently are assigned short code and infrequent alphabets are assigned long

code words. Entropy coding devises a method for selecting and assigning the code

words to source letters. Consider the following alphabet set (with probability of

occurrences) and three possible encoding techniques:

alphabet pi code I code II code III

x1 1/2 1 0 0

x2 1/4 00 10 01

x3 1/8 01 110 011

x4 1/8 10 111 111

code code I code II code III

Uniquely decodable No Yes Yes

Instantaneously decodable No Yes No

Prefix free No Yes No
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(b) Huffman code Algorithm - buttom up approach

Figure 3.4: Graphical illustration of the Shannon-Fano and Huffman algorithms.

Thus our objective is to design a unique code which is uniquely and instantaneously

decodable, as above example illustrates that such codes should be prefix free .

Most elementary techniques are Shannon-Fano and Huffman codes. A major draw

back of such codes is that they require apriori information about probability dis-

tribution of source alphabets which may not be available always . Generally

dictionary-less codes such as Lempel-Ziv and Tunstall codes are preferred.
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3.3 Data Format

Data formatting is an important facet of digital communication. Several binary bits

can be mapped into one symbol. There exist several mapping schemes. In general

there exist only M = 2k possible symbols, each symbol represents k info bits.

There exist several data mapping possibilities. In the following only a few well

known schemes are discussed.
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(a) 16 PSK Constellation

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(0000) (0001)

(0010) (0011)

(0100) (0101)

(0110) (0111)

(1000)(1001)

(1010)(1011)

(1100)(1101)

(1110)(1111)

(b) 16 QAM Constellation
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(c) 8 PAM Constellation

Figure 3.5: The constellation diagrams of PAM, QAM and PSK.
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Pulse Amplitude Modulation

The waveform of pulse amplitude modulation (PAM) may be represented as

sm(t) = Amg(t) 1 ≤ m ≤ M (3.18)

where g(t) is a pulse of duration T , and Am 1 ≤ m ≤ M denotes set of M possible

amplitudes corresponding to M = 2k (each symbol represents k info. bits).

The average energy of PAM transmitted symbols

Eavg =
Eg

M

M∑

m=1

A2
m

=
2Eg

M
(12 + 32 + · · · + (M − 1)2)

which simplifies into

=
2Eg

M
× M(M2 − 1)

6

=
(M2 − 1)

3
Eg. (3.19)

Phase Modulation

In phase modulation, the M-signal waveform is represented as

sm(t) = ℜ
{

g(t)ej
2π(m−1)

M ej2πfct

}

, m = 1, . . . ,M

= g(t) cos

[

2πfct+
2π

M
(m− 1)

]

= g(t) cos

(

2π

M
(m− 1)

)

cos(2πfct) − g(t) sin

(

2π

M
(m− 1)

)

sin(2πfct)

where g(t) is the pulse shape and θm=2π(m−1)/M with m=1, . . . ,M being possible

values of the carrier to convey the transmitted information. Digital phase modula-

tion is called phase shift keying. The average energy of the transmitted signal can

be defined as

Eavg =
1

2
Eg. (3.20)
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The euclidean distance between possible signal points is defined as

dmn =
√

‖sm − sn‖2

=

√
√
√
√Eg

[

1 − cos

(

2π

M
(m− n)

)]

(3.21)

and the minimum distance corresponding to |m− n| = 1 is

dmin =

√

Eg

(

1 − cos
2π

M

)

=

√

2Eg sin2 π

M
(3.22)

Quadrature Amplitude Modulation

This scheme maps information bits on cos(2πfct) and sin(2πfct). The resulting

mapping scheme is called quadrature amplitude modulation (QAM) . The cor-

responding signal may be expressed as

sm(t) = ℜ
{

(Ami + jAmq)g(t)e
j2πft

}

= Amig(t)cos(2πft) − Amqg(t)sin(2πft) m = 1, 2, · · · ,M (3.23)

Euclidean distance between any pair of symbols is defined

dmn =
√

‖sm − sn‖2

=

√

Eg

2
[(Ami − Ani)2 + (Amq − Anq)2] (3.24)

thus the minimal distance between to adjacent symbols can be defined as

dmin =
√

2Eg (3.25)

The average energy of the symbols (for equally likely symbols) may be defined as

Eavg =
A2

M

M∑

m=1

‖sm‖2 (3.26)
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Gray coded data

By carefully choosing the assignment of data bits to symbols, the bit error can be re-

duced significantly. The example of gray codes is illustrated in Fig. 3.5.

Important definitions

• Symbol: A member of source alphabets- may or may not be binary.

• Baud: Rate of symbol transmission. i.e. 100 bauds = 100 symbols/sec

• Bit: Quantity of information carried by a symbol with selection prob-

ability p = 0.5.

• Bit rate: Rate of information transmission (bits/sec)

• SNR: The ratio of total signal power to the total noise power.

• Eb/N0: The ratio of energy available per bit to the noise power.

−2 0 2

−2

0

2

(a) QAM Constellation

−5 0 5

−5

0

5

(b) QAM Constellation

Figure 3.6: Some other conventional constellation diagrams.
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3.4 Line coding formats

In the following section only a few simple line coding techniques are presented.
For further details refer

Sklar section 2.8

Extra Reading
The

line codes determine the spectral and electrical characteristics of any given transmis-

sion system. Careful choice of line codes can reduce the power , bandwidth

requirement and lower the desipitation of power in the communication link.

Various characteristics of the popular pulse formats is illustrated in the table 3.1.

1 0 1 1 0 0 0 0 1 0 1

0

+V
U. NRZ

0

+V
U. RZ

-V
0

+V
P. NRZ

-V
0

+V
P. NRZ

-V
0

+V
Manchester

-V
0

+V
AMI

-V
0

+V
CMI

Figure 3.7: Time domain waveform of some common line codes found in literature.
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Timing Error First null AC Transparent
Extraction correction bandwidth coupled

Unipolar (NRZ) Difficult No f0 No No
Unipolar (RZ) Simple No 2f0 No No
Polar (NRZ) Difficult No f0 No No
Polar (RZ) Difficult No 2f0 No No
Manchester Difficult No 2f0 Yes No
AMI Rectify Yes f0 Yes No
CMI Simple Yes 2f0 Yes Yes

Table 3.1: Comparison of common line codes available in the literature.

i. Dc Component: Eliminating the DC energy from the signal’s power spec-

trum enables the system to be ac coupled.

ii. Self Clocking: symbol of bit synchronizations is required for any digital

communication system. Some line codes have inherent features allowing

recovery of the clock signal.

iii. Error detection Some schemes such as doubinary provide means for error

detection without any extra arrangements.

iv. Bandwidth Efficiency: Some schemes such as multi-level codes increase the

efficiency of bandwidth by reducing the bandwidth requirement for any

specific data-rate.

v. Noise immunity: Line codes can be characterised by robustness against

noise, for instance NRZ codes have better performance than RZ codes under

similar channel conditions.

The spectral characteristics of pulse shapes have very important implications for

example possibility of carrier recovery from transmitted signal, required transmit

bandwidth, distribution of power in spectrum and DC power desipitation etc. The

supplementary slide sheds light on these features.

The generic PSD of a conventional line code can be evaluated through the fol-
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Figure 3.8: Spectral characteristics of common line coding techniques.

lowing approach. The transmitted signal s(t) can be defined as

s(t) =
+∞∑

n=−∞

ang(t− nTs) (3.27)

From the definition of power spectral density we know that

Ps(f) = lim
Ts→∞

|STs(f)|2
Ts

(3.28)
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The auto-correlation function

Rs(t+lTs) =
+∞∑

n=−∞

+∞∑

m=−∞

E{ana
∗

m}g(t+ lTs − nTs)g
∗(t−mTs) (3.29)

Here E{·} represents a statistical expectation operator,
For further detail refer

Haykin section 3.8.

Extra Reading
this expectation operator

comes to play because an is not a deterministic signal (this fact is not discussed

here further, but it means that its sufficient to take a look at certain combination of

ana
∗

m to draw conclusion about the overall autocorrelation function). The Fourier

integral of this correlation function can found using the definition (3.28)

S(f) · S∗(f) =

(
∫ +∞

t=−∞

+∞∑

n=−∞

ang(t− nTs)e
−j2πftdt

)

·
(
∫ +∞

t=−∞

+∞∑

m=−∞

am+lg(t− lTs −mTs)e
−j2πftdt

)
∗

= |G(f)|2
(

+∞∑

n=−∞

ane
−j2πfnT s

)(
+∞∑

m=−∞

am+le
−j2πf(m+l)T s

)
∗

= |G(f)|2
+∞∑

n=−∞

+∞∑

m=−∞

E{an+la
∗

m}e−j2πf(n−m−l)Ts (3.30)

The double summation term in (3.30) can be simplified into a single summation

since indices n and m in
∑∑

ej2πf(n−l−m) just create offset which ranges from −∞
to +∞. Therefore we can rewrite the summation index and

F{Rs(t− lTs)} = |G(f)|2
+∞∑

n=−∞

E{ana
∗

n+l}e−j2πf(n) (3.31)

Using the expression for Fourier transform of auto-correlation in (3.28) we can write

the generic expression for PSD as follows

Ps(f) = F{Rs(t− lTs)} =
|G(f)|2
Ts

+∞∑

n=−∞

E{ana
∗

n+l}e−j2πf(n) (3.32)

Now lets apply this definition to calculate the PSD of simple NRZ unipolar trans-
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mission using simple rectangle pulses. The signal levels can be defined as

an =







A when un = 1

0 when un = 0
(3.33)

For now we assume the common rectangular pulse as the pulse shape which is defined

as

g(t) = Π

(

t

Tb

)

(3.34)

Firstly the auto-correlation function for transmitted data symbols is defined as

Rs(l) = E{anan+l} =
4∑

i=1

(anan+l)pi (3.35)

This expression can be written in two terms as

Rs(0Ts) =
1

2
(0)2 +

1

2
(A)2

Rs(lTs) =
1

4
A2 +

1

4
A2 − 1

2
A2 − 1

4
(A)2with l 6= 0

(3.36)

A plot of the above auto-correlation function would be.

Note:

Using the linearity properties of the Fourier transform the spectrum of this expres-

sion can be easily obtain. Hence, this all can be summed up into

Ps(f) =
A2

4

|G(f)|2
Ts

∞∑

k=−∞

(

1 + δ(f − k

Ts

)

)

(3.37)

using the standard Fourier transform of Π(
t

T
) defined in (1.9) the final expression
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for Unipolar NRZ pulse shaping can be expressed as

Punipolar NRZ(f) = Ts
A2

4

(

sin(πfTb)

πfTb

)2 ∞∑

k=−∞

(

1 + δ(f − k

Ts

)

)

(3.38)

For further detail refer

Couch section 3.5

Extra Reading
Please try to obtain the expression of PSD for other common line codes and critically

analyze the power distribution and bandwidth utilization of these codes.

3.5 Pulse Shapes

In the last section we have consider rectangular pulses; From practical point of view

rectangular pulse shape is undesirable because it requires complex infinite

bandwidth which is not available. The design criteria for pulse shaping was formu-

lated by Nyquist.

P (f) =







1

2W
, 0 ≤ |f | ≤ f1

0, |f | ≥ W

which is

P (f) =
1

2W
rect

(

f

2W

)

(3.39)

The most important characteristic of P (f) is that its inverse Fourier transform p(t)

satisfies Nyquist condition that

p(t) =







1, t = 0T

0, t = ±nT n = 1, 2, . . .

The pulse may have non-zero value between multiples of T but they do not effect

the sampled signal. This pulse is physically unrealizable because sharp transition in

P (f) means that the impulse response decays at a very slow rate and this impulse

response need to be very long.

This limitation can be encountered by extending the bandwidth of the P (f) from

W to 2W .
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3.5.1 Raised Cosine Pulse

Let P (f) denote the overall frequency response composed of three components

P (f) =







1

2W
, 0 ≤ |f | ≤ f1

1

4W

[

1 + cos

(

π

2Wρ
(|f | −W (1 − ρ))

)]

, f1 ≤ |f | ≤ 2W − f1

0 |f | ≥ 2W − f1

with ρ = 1 − f1/W is the roll-off factor represents excess bandwidth and ρ ∈ (0, 1).

The frequency response of the raised cosine pulse is illustrated in the fig. 3.10. The

time response p(t) is the inverse Fourier transform of the frequency response P (f)

i.e.

p(t) = sinc
(

2Wt
)
(

cos 2πρWt

1 − 16ρ2W 2t2

)

(3.40)

In the impulse response for different values of ρ is plotted in fig.3.10.
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Figure 3.9: ISI free transmission of data with sinc pulse.
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Figure 3.10: Time and frequency response of the raised cosine pulse shape
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3.5.2 Root Raised-Cosine Pulse Shaping

A more sophisticated form of pulse shaping uses the root raised cosine instead of

raised cosine spectrum. Thus using the trigonometric identities we write

cos2θ =
1

2
(1 + cos2θ) (3.41)

In our case θ = π/2Wρ(|f | − W (1 − ρ)), the spectrum of the pulse shape can be

defined as

P (f) =







1√
2W

, 0 ≤ |f | ≤ f1

1√
2W

cos




π

4Wρ
(|f | −W (1 − ρ))



, f1 ≤ |f | < 2W − f1

0, |f | ≥ 2W − f1

The corresponding time domain function of the impulse is defined as

p(t) =

√
2W

(1 − 8ρWt)2

(

sin(2πW (1 − ρ)t)

2πWt
+

4ρ

π
cos(2πW (1 + ρ)t)

)

(3.42)

This pulse satisfies the orthogonality condition which is essential for ISI free trans-

mission

∫ +∞

−∞

p(t)p(t− nT )dt = 0 for n = ±1,±2, . . . (3.43)

Its is worth mentioning that despite of being orthogonal, this pulse does not satisfy

(3.40).

3.6 Digital Bandpass Modulation Techniques

Bandpass modulation (either analog or digital) is the process by which an infor-

mation signal is converted to a sinusoidal waveform; for digital modulation, such a

sinusoid of duration T is referred to as a digital symbol. The information bearing

signal can be expressed as

s(t) = A(t) cos[ω0t+ φ(t)] (3.44)

77



-3T -2T -T 0 T 2T 3T

0

0.2

0.4

0.6

time

A
m

p
li
tu

d
e

g(
t)

Square root raised cosine Pulse Shape

ρ=0
ρ=0.5
ρ=1

Figure 3.11: Impulse response of square root raised cosine pulse shape

Coherent Non-coherent
Phase shift Keying Differential phase shift keying
Frequency shift Keying Frequency shift keying
Amplitude shift Keying Amplitude shift keying
Continuous phase shift keying Continuous phase shift keying
variants thereoff variants thereoff

Table 3.2: classification of coherent and non-coherent transmission techniques.

where ω0 is the radian frequency of the carrier and φ(t) is the phase. Fundamental

the digital modulation schemes can be classified in synchronous and asynchronous

systems. A brief list of the schemes is tabulated below, and simplistic description is

provided there after.

Phase Shift Keying

Phase shift keying (PSK) is widely used in military and commercial communication

systems. The general analytical expression for PSK is

si(t) =

√

2E

T
cos(ω0 + φi(t)) 0 ≤ t ≤ T

i = 1, . . . ,M
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where φi(t) will have M discrete values i.e.

φi(t) =
2π

M
i, i=1, . . . ,M (3.45)

The waveform of PSK signal is illustrated in Fig. 3.12.

Frequency Shift Keying

The general analytical expression for FSK modulation is

si(t) =

√

2E

T
cos(ωit+ φ) 0 ≤ t ≤ T

i = 1, . . . ,M

where frequency term ωi has M discrete values and an arbitrary constant phase.

The waveform of the above signal is illustrated in Fig. 3.12.

Amplitude Shift Keying

The general analytical expression for ASK modulation is

si(t) =

√

2Ei

T
cos(ω0t+ φ) 0 ≤ t ≤ T

i = 1, . . . ,M

where the gain term Ei has M discrete values and an arbitrary constant phase.

Amplitude Phase Keying

The general analytical expression for APSK modulation is

si(t) =

√

2Ei

T
cos(ω0t+ φi) 0 ≤ t ≤ T

i = 1, . . . ,M

where combination of amplitude and phase terms Ei and φi have M discrete values.
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Figure 3.12: Graphical illustration of different shift keying schemes.
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Differential Phase Keying

The problem with coherent transmission system is that the demodulator requires

exact estimate of carrier phase. However in practice carrier phase is extract from

the received signal is generally not accurate.

One way to overcome this problem is to encode information in the phase differ-

ences between successive signal transmission as opposed to absolute phase encoding.

For BPSK scheme information bit 1 may be transmitted by shifting the phase of the

carrier by 180◦ relative to previous phase while bit 0 is transmitted by a zero phase

shift relative to previous signalling phase. This scheme can be extended to higher

order of constellation.

uk

u′
k−1

u′
k

ak

z−1

z−1

yk

ûk

(·)∗

y′
k×y∗

k−1

Figure 3.13: Encoder and decoder for differential phase shift keying.

Example of differential encoding(decoding) process for BPSK system.

3.7 Communication Channels

In this section, we consider a few typical channel models commonly found in litera-

ture.
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k 0 1 2 3 4 5
uk 1 1 0 1 1 1

uk−1

u′

k

ak=yk

y∗

k−1

ûk

Table 3.3: where ak corresponds to mapping binary values into bipolar symbols i.e.
‘0′ → 1 and ‘1′ → −1.
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Figure 3.14: Time and Spectral domain representation of white Gaussian noise.

3.7.1 Noisy channel

The noise analysis of a communication system based on idealized form of noise pro-

cess called white noise . The adjective white refers to the fact that white light

contains equal amount of all frequencies within visible band. The auto-correlation

and power spectral density of noise process are illustrated in Fig. 3.14. The PSD of

white noise process is defined as

Sn(f) =
N0

2
=
kT

2
(3.46)

where k is the Boltzmann’s constant, T is the ambient temperature measured in

kelvins and factor of 1/2 has been included to indicate that half power is associated
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with +ve and -ve frequencies respectively. Some important characteristics of white

noise are

• n(t) is a stationary process.

• n(t) is zero mean process. i.e. E{n(t)} = 0

• n(t) has a variance σ2
n. i.e. E{n2(t)} = σ2

n

• n(t) has autocorrelation defined as rnn(τ) = δ0(τ)

• n(t) is Gaussian process.

p(n) =
1

σn

√
2π

exp
(

− n2

2σ2
n

)

(3.47)

Practically the extent to which a system is exposed to white noise depends on

bandwidth of the receiver. For a noise bandwidth of BN the average noise power is

defined as

PN = N0BNH
2(0) (3.48)

where H2(0) is the channel PSD at DC.

3.7.2 Distortionless Transmission System

In any communication system we require the output waveform to be a replica of the

input waveform. In such cases we need to minimize the distortion caused by the

amplifier to the communication channel. It is of interest to determine the charac-

teristics of distortionless transmission.

y(t) = kx(t− td) (3.49)

Fourier transform of this equation yields

Y (jω) = kX(jω)e−jωtd (3.50)
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but

Y (jω) = X(jω)H(jω)

therefore

H(jω) = ke−jωtd (3.51)

This function is required for distortionless transmission. From this equation it fol-

lows that

|H(jω)| = k

θh(ω) = −ωtd (3.52)

This implies that for distortionless transmission, the amplitude response |H(ω)|
should be constant, and the phase response θh(ω) must be linear function of ω. The

slope of θh(ω) with respect to ω is −td.

The time delay resulting from signal transmission through a system is negative of

the slope of the system phase response θh, that is

td(ω) = −dθh

dω

If the slope of θh is constant (i.e. θh is linear with ω), all the components are delayed

by the same time interval, but if slope is not constant td, the time delay varies with

frequency. This means that different frequencies go different amount of time delay

and consequently output waveform will not be a replica of the input waveform.→if

frequency components are delayed equally they will have different phase angle offset

in time td. The above is listed as follows

• Amplitude distortion, which occurs when

|H(f)| 6= |k|.

• Delay distortion which occurs when

θh(f) 6= 2πtdf ±m180◦.
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Figure 3.15: magnitude & phase response of distortionless channel.

3.7.3 Non-linear Channel

Nonlinear distortion, which occurs when the system includes nonlinear elements such

as diodes , transistor and amplifiers . The distortions described in

last section are designated as linear distortions, since they can be described in terms

of the transfer function of a linear system. A system having nonlinear distortions

can not be described by a transfer function. Instead instantaneous values of input

and output are related by a curve of transfer function y(t) = T [x(t)] commonly

called transfer characteristic , the flattening of output for large input signal is

known as saturation-and-cutoff effect of transistors. Under small signal inputs, it

may be possible to linearize the transfer characteristics in piecewise fashion. The

more general approach is a polynomial approximation to curve of the form

y(t) = a1x(t) + a2x
2(t) + a3x

3(t) + · · · (3.53)

the higher powers of this equation give rise to nonlinear distortion. Even though we

have no transfer function, the output spectrum can be found atleast in principle by
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convolution theorem

y(f) = a1X(f) + a2X(f) ∗X(f) + a3X(f) ∗X(f) ∗X(f) + · · · (3.54)

Common reason for nonlinear distortions as amplitude limiter, amplifier non-linearity

idealized

Actual

y(t)

y(t)

Figure 3.16: transfer characteristic of transistor / amplifier.

and laser diodes; As a consequence of this, the x(t) which was bandlimited to W

would contain frequencies beyond W. The components which are outside W can be

eliminated via filtering, but the ones inside the band of W can not be removed.

3.7.4 Discrete-time model for channel with memory

For further detail refer

Proakis section 6.4

Extra Reading
Fig. 3.17 illustrates the transmission chain of a generic communication system.

The transmitter sends data at the rate of 1/Ts symbols per second. The input bits

u[n] are mapped onto symbols which are then applied to a suitable analog transmit

pulse shaping filter gTx(t) and is transmitted over a communication channel c(t) (

which may be with or without memory), on the receiver we have receive filter gRx(t)

which is matched to the product of communication channel c(t) and gTx(t), output

of this filter followed by buad rate the sampling can be equivalently expressed as a

discrete-time transversal filter h[l].

The input a[n] applied to this equivalent filter h[l] is the sequence of information

symbols and its output y[n] is also a sampled discrete-time sequence.

For simplicity of mathematical model in literature the overall cascade of Tx/Rx

and bandpass RF channel are combined together

h(t) = gTx(t) ∗ c(t) ∗ gRx(t) (3.55)

86



modulator shaping
pulseimpulse

detector

mapper

sampler filter
receive

Equalizer

n(t)

c(t)

s(t)

∑
n anδ(t−nT)

ûk
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Figure 3.17: Illustration of equivalent discrete time channel model

Note that h(t) is also the pulse shape that will appear at the out of the receiver filter

when single flat top pulse is fed into the transmitting filter (i.e. channel impulse

response).

Since the output of the signal is obtained after the baud-rate sampling therefore

the received signal is defined as

y[n] =
Lh−1
∑

l=0

h[l]a[n− l] (3.56)

The equivalent system transfer function is

H(f) = GTx(f) · C(f) ·GRx(f) (3.57)

Here H(f) is the combined channel frequency response of the Tx/Rx and RF band-

pass filters. Ideally this channel frequency response should be

H(f) = F

[

Ts

(

sin(πfst)

πfst

)]

=
1

fs

Π

(

f

fs

)

(3.58)
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For this requirement the GRx(f) can be determine as

GRx(f) =
H(f)

GTx(f) · C(f)
(3.59)

When GRx(f) is obtained from (3.59) is called the equalizing filter since this

Transmitting
Filter

Channel
Filter Filter

Receiver
s(t)

C(f)

y(t)

GTx(f)GTx(f)

Figure 3.18: Equivalent transmission system

Rx filter will help minimize the effects of inter symbol interference (ISI). The char-

acteristics of equalizing filter depend on C(f), the RF channel frequency response,

as well as on the H(f). If the channel varies in time (as is the case in wireless com-

munication system) the equalizing filter needs to be an adaptive filter. The object

of these equalizing filters is to maximize the eye opening.

The effects of ISI can be mitigated using certain techniques which are commonly

referred to as Nyquist criterion for ISI free transmission. In the following subsections

we shed light on these requirements.

This model is used commonly to describe a communication system in the presence

of channel with memory. The characteristics of the channel filter depends on the

nature of the medium.

3.8 Intersymbol Interference

If the transmitted signal pulses are filtered improperly as they pass through a com-

munication system ,
For further detail refer

Hayking section 4.4

Sklar section 3.3

Extra Reading
they will spread in time. and pulse for each symbol may be

smeared into adjacent time slots and cause ISI as illustrated in the Fig. 3.19(b).

This problem was first studied by Nyquist. He discovered three methods for pulse

shaping that could be used to eliminate ISI which will be discussed subsequently.

If the transmitted signal pulses are filtered improperly as they pass through a com-

munication system , they will spread in time. and pulse for each symbol may be
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smeared into adjacent time slots and cause ISI as illustrated in the Fig. 3.19(b).

This problem was first studied by Nyquist. He discovered three methods for pulse

shaping that could be used to eliminate ISI which will be discussed subsequently.

y[n] =
L−1∑

l=0

h[l]a[n− l] (3.60)

where an may take on any of the allowed M multilevels (M = 2 for binary signalling)

and h[l] is the discrete-time channel impulse response which may be spread over

several symbols intervals. The symbol rate is R = 1/Ts. It must be said that the

equivalent channel h(t) is continuous, but due to baud rate sampling, the response

of channel at values other than multiples of Ts does not the effect the output. This

fact is illustrated in the fig. 3.20.

3.8.1 Nyquist’s First Criterion

For further detail refer

Couch section 3.6

Extra Reading
Nyquist’s first criterion for eliminating ISI is to use an equivalent transfer function

He(f), such that the impulse response satisfies the condition

he(t− kTs) =







C, k = 0

0, k 6= 0
(3.61)

where k is an integer, Ts is the symbol interval and C is a nonzero constant. That is,

for a single flat-top pulse of level a present at the input of the transmitting filter at

t = 0, the received pulse would be ahe(t). It would have a value of aC at t = kTS,

but would not cause interference at other sampling times because he(t− kTs)=0 for

k 6= 0.

If we choose that a sin(x)/x function for he(t), then the impulse response of the

equivalent channel would be

he(t) =
sin(πfst)

πfst
(3.62)
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where fs is the baud rate, the transmit spectrum looks like

He(f) =
1

fs

Π

(

f

fs

)

(3.63)

There will be no ISI. Furthermore, the absolute bandwidth of this transfer function

is B = fs/2.

• The overall amplitude transfer function of the equivalent channel He(f) is flat

over −B < f < B and zero elsewhere. This is physically unrealizable (i.e. the

impulse would be non-causal and of infinite duration). He(f) is difficult to

approximate because sharp transitions on the edges.

• The synchronization of the clock in the decoding sampling circuit has be to

almost perfect, since the sin(x)/x pulse decays only as 1/x and is zero in

adjacent time slots.

3.8.2 Nyquist’s Second & Third Criterion

Nyquist’s second scheme for ISI control allows some ISI to be introduced in a con-

trolled way so that it can be cancelled out at the receiver and the data can be

recovered without error if no noise is present.
For further detail refer

Couch Section 3.6

Extra Reading

In Nyquist’s third method ISI is eliminated by choosing he(t) so that the area under

he(t) pulse within the desired symbol interval is not zero but the area under he(t)

in adjacent symbol interval is zero. For data detection the receiver evaluate the

integral under he(t) over each Ts interval.

90



z−1

∑

yn

nn

z−1
an

h0

z−1

h1 h2 hLh−2 hLh−1

an−1 an−2

(a) The equivalent channel model.
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(b) Intersymbol Interference Illustrated for Uni-polar NRZ pulse shape

Figure 3.19: The equivalent discrete time model of channel with memory and illus-
tration of its effect on rectangular pulses.
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Figure 3.20: Sampled output of a equivalent channel h(t).
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3.9 Eye Diagram

The effect of channel filtering and channel noise can be seen by observing the received

line code on an analog oscilloscope. The left side of the fig. 3.21 illustrates the

received corrupted NRZ waveform for the cases of (a) ideal channel filtering, (b)

filtering that produces intersysmbol interference (ISI) and (c) noise plus ISI. On

the right hand side of the figure, corresponding oscilloscope presentations of the

corrupted signal with multiple sweeps, where each sweep is triggered by a clock

signal and sweep width is slightly longer than Tb. These displays on the right

are called the eye patterns . The eye diagram presents a good insight into the

Best Sampling time

Tx Waveform

Ideal filtering

Filtering with ISI

ISI & Noise

t t

t t

Tb

Figure 3.21: Eye diagram pattern

overall performance a transmission system for example SNR, BER, optimal sampling

point, clock synchronization. The illustration of this process is illustrated in the fig.

3.22.

Here the maximum level difference between top and bottom lines reference to the

term vertical eye-opening . The point in symbol duration, where this takes
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voltage noise

jitter noise

2

1

0 Ts 2Ts

Figure 3.22: Useful features of an eye diagram.

place is the optimal point for baud rate sampling. The horizontal eye opening

is the duration between two successive level crossings. The extent of horizontal eye

opening depends on the choice of the shaping pulse used in transmission system.

Another example of the eye diagram calculation is illustrated in the figure below

3.10 Matched filter

A basic problem that often arises in the study of communication system is that of

detecting a pulse transmitted over a channel that is corrupted by channel noise. For

the moment we assume that additive noise is the only source of disturbance present

in the system.

Consider the receiver model of fig.3.25 involving a linear time-invariant channel

impulse response h(t). The output of this filter y(t) consists of pulse signal g(t)

corrupted by additive noise w(t)

r(t) = ag(t) + n(t) 0 ≤ t ≤ T (3.64)

where T is an arbitrary observation interval. The pulse signal g(t) may represent

a binary symbol 1 or 0 in digital communication system. n(t) is the noise sample

n ∼ N(0, N0/2) effecting the received signal. The function of the receiver is to detect

the transmitted symbol in an optimal manner given the received signal r(t). We

have to optimize the design of receive filter so as to minimize the effect of noise at

the receiver output in some statistical sense. Since the the receive filter is linear,
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Figure 3.23: Plot of eye-diagram pattern for a pulse span multiple symbol intervals.

the resulting output y(t) may be expressed as

y(t) = h(t) ∗ r(t) = a · h(t) ∗ g(t) + h(t) ∗ n(t)

= a · g0(t) + ñ(t) (3.65)

where g0(t) and ñ(t) are produced by the signal and noise components present in

r(t). A simple way to describe the requirement of output signal component g0(t)

be considerably greater than the output noise component ñ(t) is to have a filter
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which makes the instantaneous power of desired signal g0(t) measured at time t=Ts

as large as possible compared with the average power of the output noise ñ(t). This

is equivalent to maximizing the peak pulse SNR, defined as

SNR =
|g0(t)|2
E{ñ2(t)} (3.66)

where |g0(t)|2 is the instantaneous power in the output signal and E{ñ2(t)} is the

variance of noise power. The requirement is to find impulse response h(t) of the

filter such that output signal SNR is maximized.
For further detail refer

Proakis section 5.1

Haykin section 4.2

Extra Reading

Let G(f) denote Fourier transform of the known signal g(t) and H(f) denote the

frequency response of the receiver filter h(t). The Fourier transform of the received

signal g0(t) is G(f)H(f) and g0(t) is given in terms of inverse Fourier transforms as

g0(t) =
∫ +∞

−∞

a ·H(f)G(f)ej2πftdf (3.67)

hence, when the filter output is sampled at time t = Ts

|g0(t)|2 =
∣
∣
∣a ·

∫ +∞

−∞

H(f)G(f)ej2πftdf
∣
∣
∣

2
(3.68)

Now consider the effect on the filter output due to noise alone. The PSD of output

noise n(t) is equal to the PSD of the input noise signal n(t) times the squared

magnitude response of the filter |H(f)|2. Since n(t) is white with constant PSD

N0/2, we have

SN(f) =
N0

2
|H(f)|2 (3.69)

The average power of the output noise n(t) is

E{ñ2(t)} =
N0

2

∫ +∞

−∞

|H(f)|2df (3.70)

Through substitution in previous equations

SNR =

∣
∣
∣a ·

∫ +∞

−∞

H(f)G(f)ej2πftdf
∣
∣
∣

2

N0

2

∫ +∞

−∞

|H(f)|2df
(3.71)

The numerator term can be decomposed using Schwarz’s inequality. One form of
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the inequality can be stated as

∣
∣
∣

∫ +∞

−∞

f1(x)f2(x)dx
∣
∣
∣

2 ≤
∫ +∞

−∞

|f1(x)|2dx
∫ +∞

−∞

|f2(x)|2dx (3.72)

The inequality holds if f1(x)=kf ∗

2 (x), where k is an arbitrary constant. If we identify

H(f) with f1(x) and S(f)e2πfT with f2(x), inserting (3.72) in (3.71) we obtain

SNR =
a2 ·

∣
∣
∣

∫ +∞

−∞

H(f)df
∣
∣
∣

2
∫ +∞

−∞

G(f)ej2πftdf
∣
∣
∣

2

N0

2

∫ +∞

−∞

|H(f)|2df
(3.73)

which translates into

SNR =
2Es

N0

· a2 (3.74)

The graphical illustration for a causal impulse response its corresponding matched

filter is illustrated in the fig. 3.24. The practical implementation of a matched filter

To

To-To

gRx(t) = he(To − t)

he(t)

Figure 3.24: Sample illustration of channel impulse response and it’s optimal
matched filter according to (3.73).

receiver is presented in fig. 3.25.
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Decision points

∫ kTs

(k−1)Ts
dt

Figure 3.25: Graphical illustration of matched filter with rectangular pulse and its
hardware realization.

3.11 Equalization

To compensate for linear distortion an system may be placed in ISI is a direct

consequence of band-limited channels. At any given time a received data symbol

x[k] may be influence by L preceding data symbols. In literature there exist several

techniques to mitigate the effects of ISI. In the following we discuss certain schemes

highlighting possible approaches to solve this problem.

3.11.1 Transversal filter

One approach to compensate for ISI is to use linear transversal filter. The complexity

of such transversal filters grow exponentially with the length of channel memory as

evident from (3.77). Graphical illustration of the transveral filter is illustrated in

fig. 3.28 below.

ŝ[k] =
K∑

i=−K

c[i]y[k − i] (3.75)
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g2(t)

g3(t)

g1(t)

ℑ{g4(t)}

ℜ{g4(t)}

Figure 3.26: Matched filter examples.

h ?

Figure 3.27: A typical transmission system in the presence of equalization.

where c[i] are the 2k+1 complex-values coefficients of the filter. The estimates ŝ[k] is

quantized to the nearest information symbol. Considerable research has been made
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on the criterion to optimize the filter coefficients c[k]. Since the ultimate objective

of a digital communication system is to minimize the bit error rate, it is desireable

to choose the coefficients which minimize this performance index. However the

BER performance is a highly non-linear function of c[k] therefore optimizing the

coefficients under this performance index is not feasible.

The system model can be expressed in matrix notation as

for tap gain adjustment

Algorithm

output
Equalized

Sequence
Training

z−1 z−1
z−1

c−1 c0 c+1 c+2c−2

z−2

∑

∑

Figure 3.28: The graphical illustration of adaptive transversal filter for zero-forcing
equalization.

ŝ = Yc (3.76)

where Y is the diagonal band matrix obtained from the transmitted vector y at

the input of the equalizer (when only one impulse is transmitted through the time

invariant filter). s is the equalized output and c is the unknown equalizer coefficient

which we would like to estimate. A simple least square (LS) solution can be found

through

YT s = YT Yc

ĉ =
(

YT Y
)

−1
YT s (3.77)

The process of ZF equalization for a simple example is illustrated in the following

example. Let the received (observed) set of samples y[k]={0.0108,−0.0558, 0.1617
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, 1.00,−0.1749, 0.0227, 0.0110}, we can use a LS solution using
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Which means complete elimination of ISI requires the use of an inverse filter of F (z).

The performance of the these equalizers needs to be discussed further.

The matrix representation of the ZFE (for the case when channel and equalizer

length of 3 and 4 respectively) can be expressed as
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Yc = sd + e (3.78)
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This equalizer can be expanded to consider fractional spaced equalizers (not consid-

ered here). The foremost problem of this type of equalizers is that their complexity

increases exponentially with the number of channel coefficients. This problem can

be solved by taking the adaptive approach e.g. least mean squared (LMS) or recur-

sive least squared (RLS) methods. These schemes are not considered in this course.

3.12 Channel coding Techniques

Channel coding techniques are special type of techniques/algorithms which can im-

prove the communication performance by enabling the transmitted signals to tol-

erate the adverse effects of the channel such as noise,
For further detail refer

Sklar section 6.4

Haykin section 10.3

Extra Reading
interference and fading. The

output

input

n−bits

k−bits

Source coder

(a) Structure of a block en-
coder.

k−bits

n−bits

output

input

Channel coder

(b) Structure of a block de-
coder.

coding techniques can be broadly classified into two classes
Channel Coding is also

known as forward error

correcting code.

Note:

1. Waveform coding: Mainly deals with formatting and shaping of data to en-

hance the performance of the system.

2. Structure sequences: Introduces a structured redundancy to the transmitted

sequence which ensures better recovery on the receiver side.

In the case of structured codes, the source data are segmented into blocks of k data

bits also called information or message bits; each can represent any one of 2k distinct

messages. The encoder transforms each k-bit data block into a larger block of n bits.

The (n − k) bits, which the encoder adds to each data block, are called redundant

bits, parity bits or check bits; they carry no new information. The code is referred

to as an (n, k) code. The ratio of data bits to total bits k/n is called code rate .

Code is the portion of information in coded message.
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Figure 3.29: Mapping of message blocks to code blocks.

Single Parity Check Codes

Parity check codes use linear sum of the information bits, called parity symbols

or parity bits, for error detection or correction. A single parity check code is con-

structed by adding a single parity bit to a block of bits. The parity bit takes on

the value of one or zero. The summation is performed using modulo-2 arithmetic

(exclusive-or logic). This code can not automatically correct the bit errors.

(4,3) Parity codes

Configure a (4, 3) even-parity error-detection code such that the parity symbol ap-

pears as the leftmost symbol of the codeword. Which error patterns can the code

detect?

Message Parity Codeword
000 0 0 000
001 1 1 001
010 1 1 010
011 0 0 011
100 1 1 100
101 0 0 101
110 0 0 110
111 1 1 111

Table 3.4: A simple single parity check code.
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Generator Matrix

If k is large, a lookup implementation of the encoder become prohibitive. For a

(127, 92) code there are 292 possible data vectors. The encoding of these vector may

not be suitable through simple lookup table. However complexity can be reduced

by generating the codes instead of sorting them.

The generator matrix is the smallest linearly independent set that spans the subspace

is called a basis of the subspace, and the number of vectors in this basis set is the

dimension of the subspace. Any basis set of k linearly independent n-tuples v1, v2,

· · · , vk.

G =











v1

v2

...

vk











=











v11 v12 · · · v1n

v21 v22 · · · v2n

...

vk1 vk2 · · · vkn











(3.79)

The generation of codeword u can be written in matrix notation as the product of

m and generator matrix G

[

u1 u2 · · · un

]

=
[

m1 m2 · · · mk

]











v11 v12 · · · v1n

v21 v22 · · · v2n

...

vk1 vk2 · · · vkn











(3.80)

Example: A code word assignment for (6,3) code is illustrated for example, there

are 2k=23 = 8 messages and there for 8 codewords. The table 3.5 forms a subspace

Message Codeword
000 000000
100 110100
010 011010
110 101110
001 101001
101 011101
011 110011
111 000111

Table 3.5: An example code for (6,3) parity check code.
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of V6 (the all zero vector is present, and the sum of any two codewords yields an-

other codeword member in the subspace). Therefore, these codewords represent a

linear block code. An important question that arise at this point in time is how

was the code word to message assignment chosen for this (6,3) code? A unique as-

signment for a particular (n, k) code does not exist. A generator matrix is defined as

G =








v1

v2

v3








=








1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1








(3.81)

where v1 ,v2 and v3 are three linearly independent vectors (a subset of the eight

code vectors) that can generate all the code vectors. Notice that the sum of any two

generating vectors.

u =
[

m1 m2 m3

]








1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1








=





p1
︷ ︸︸ ︷

m1 ⊕m3
︸ ︷︷ ︸

u1

p2
︷ ︸︸ ︷

m1 ⊕m2
︸ ︷︷ ︸

u2

p3
︷ ︸︸ ︷

m2 ⊕m3
︸ ︷︷ ︸

u3

m1 m2 m3



 (3.82)

An example code is generated here

U =
[

1 1 0
]








v1

v2

v3








= 1 · v1 + 1 · v2 + 0 · V3

=1 1 0 1 0 0 + 0 1 1 0 1 0 + 0 0 0 0 0 0

=

Thus, the code vector corresponding to the vector is a linear combination of the

rows of G, the encoder needs to only store the k rows of G instead of 2k vectors of

the code.
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Systematic Linear Block Codes

A systematic (n, k) linear block code is a mapping from a k-dimensional message

vector to a n-dimensional codeword in such a way that part of the sequence generated

coincides with k messages digits. The remaining (n− k) digits are parity digits. A

systematic linear block code will have a generator matrix of the form

G =







P Ik








=












p11 p12 · · · p1(n−k)
... 1 0 · · · 0

p21 p22 · · · p2(n−k)
... 0 1 · · · 0

...
... · · · ...

... 0 0 · · · 0

pk1 pk2 · · · pk(n−k)
... 0 0 · · · 1












(3.83)

where P is the parity array portion of the the generator matrix pij=(0 or 1) and Ik

is the k× k identity matrix. The systematic generator further reduces the encoding

complexity since storing of identity matrix is not required.

u1 u2 · · · un =
[

m1 m2 · · · mk

]

×












p11 p12 · · · p1(n−k)
... 1 0 · · · 0

p21 p22 · · · p2(n−k)
... 0 1 · · · 0

...
... · · · ...

... 0 0 · · · 0

pk1 pk2 · · · pk(n−k)
... 0 0 · · · 1












(3.84)

where

ui =m1p1i +m2p2i + · · · +mkpki for i = 1, · · · , (n− k)

mi−n+k for i = (n− k + 1), · · · , n
(3.85)

and a general systematic code can be expressed as

u = [p1, p2, . . . , pn−k,m1,m2, . . . ,mk] (3.86)
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where

p1 = m1p11 +m2p21 + · · · +mkpk1

p2 = m1p12 +m2p22 + · · · +mkpk2

pn−k = m1p1,n−k +m2p2,n−k + · · · +mkpk,n−k (3.87)

It must be said that the information bearing vector may be located at any position

in the vector. The first parity bit is the sum of the first and third message bits;

the second parity bits is the sum of the first and second message bits; and the third

parity bit is the sum of the second and third message bits. This system of equations

provides insight into the structure of linear block codes.

Parity-Check Matrix

Let us define a matrix H called the parity-check matrix , that will enable us to

decode the received vector. For each k×n generator matrix G there exist (n−k)×n

matrix H such that rows of G are orthogonal to the rows of H; that is GHT =0

where HT is the transpose of H, and 0 is a k × (n − k) all-zero matrix. HT is an

n × (n − k) matrix whose rows are the columns are the rows of H. To full fill the

orthogonality requirements for a systematic code, the components of the H matrix

for a systematic code is written as

H =
[

In−k|PT
]

(3.88)

Hence, the HT matrix is written as

HT =




In−k

P



 (3.89)
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Using defination of parity matrix from (3.83) and (3.87) parity check matrix is

defined as

HT =
























1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1

p11 p11 · · · p11

p21 p22 · · · p2k

...
... 0

pk1 pk2 · · · pk,n−k
























(3.90)

It is easy to verify that the product uHT of each codeword u generated by G and

H matrix yields

uHT =
[

p1 + p1 p2 + p2 · · · pn−k + pn−k

]

= 0 (3.91)

where the parity bits p1, p2, . . . , pn−k are defined as above.

Example: From the generator matrix formulated in (3.83) we can formulate the

parity check matrix and decode the transmitted message as

HT =




In−k

P



 (3.92)

A detailed elaborate description of the system is defined as

uHT =

=
[

1 0 1 1 1 0
]

















1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1

















[ ]

(3.93)
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Syndrome Testing

Let r = [r1 r2 . . . rn]T be received vector one of 2n resulting from the transmission

of u = [u1 u2 . . . un]T (one of 2k n-tuples). We can therefore describe r as

r = u + e (3.94)

where e = [e1 e2 . . . en]T is an error vector or error pattern introduced by the

channel. There are total of 2n − 1 potential nonzero error patterns in the space of

2n n-tuples. The syndrome of r is defined

s = rHT (3.95)

The syndrome is the result of a parity check performed on r to determine whether r

is a valid member of the codeword set. If in fact r is a member, the syndrome S has

a value 0. If r contains detectable errors, the syndrome has some non-zero value,

the syndrome can be defined as

s = (u+e)HT

= uHT + eHT

= eHT (3.96)

from (3.94) and (3.96) it is evident that syndrome test whether performed on a

corrupted code or error sequence yields similar results and there exists one to one

mapping between correctable codes and syndrome. → Syndrome code can be used

to estimate the error.

Some further observations are

• No rows of H can be an all zero vector, otherwise an error in the corresponding

codeword position would not be detectable.

• All columns of H must be unique. If two columns are same their errors will

be indistinguishable.
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Example:Syndrome test

Lets us assume that u = [101110] from the (6,3) code mentioned earlier. With single

bit error in the left-most bit so r = [001110] . From (3.94) and (3.96) we can verify

that syndrome of corrupted code vector and error vector is the same.

Error Syndrome
vector
000000 000
000001 101
000010 011
000100 110
001000 001
010000 010
100000 100
010001 111

s = rHT

=
[

1 0 1 1 1 0
]

HT

[

1 1 + 1 1 + 1
]

=
[

1 0 0
]

(3.97)

From the above lookup table it is possible to estimate the û=r+ê. Error detection

and correction capability depends on the error correction capability of the codes.

Typically the error correction capability of code is defined under the following frame-

work.

The Hamming weight w(u) of a codeword u is defined as the number of ones

present in a codeword (e.g. u = [101101] then w(u) = 4). Furthermore Ham-

ming distance between two codewords u1 = [1011010] and u2 = [0111001], the

hamming distance d(u1, u2) = 4.

Consider the set of distance between all pairs of codewords in the space Un. The

smallest member of the set is the minimum distance of the code and is denoted by

dmin. The minimum distance between two codes is also defined as the minimum

hamming distance between two valid codes. So a valid code u1 is differentiable

from another valid code as long as the error vector e has hamming weight less than
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u1 u3

u5

u6
u4

u2 u8

u7

dmin

Figure 3.30: Illustration of code space, minimum distance, error detection and cor-
rection capabilities.

dmin. This idea is illustrated in the fig. 3.30. The minimum distance is like the

weakest link in the chain and provides a measure of the codes minimum capability

and characterizes codes strength. If u1 and u2 are valid codes then w = u1 + u2 is

also a codeword.

In general the error correcting capability is depends on dmin of the channel code,

the error-correcting capability t of a code is defined as the maximum number of

guaranteed correctable errors per codeword as written

t = ⌊dmin − 1

2
⌋ (3.98)

Often a code that corrects all possible sequences of t or fewer errors can also correct

certain sequences of t+ 1 errors. However the error detecting capability of the code

is typically defined as e = dmin − 1.
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3.13 BER analysis

The receiver filter and the equalizing filter are shown as two separate blocks in order

to emphasize their separate functions. The figure demodulation/detection process

a Signal to sample transformation, where signal waveform is sampled y[nTs], this is

often called test statistics.

b A decision is made regarding the digital meaning of the signal.
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Bandpass filter
Envelope
Detector

Slicer

plus
signal

noise
Equalization

γ0
y[n]

yRF (t) y(t)

y(t)=s(t) + z(t)

y[n] ŝ[n]

t=Ts

The receiver filter and equalizing filter are shown at two separate blocks in order

to emphasize their separate functions. The figure highlights two step demodulation

/ detection process step 1. signal to sample transformation, where signal waveform

is sampled y(nTs), this is often called as test statistics. At step 2, a decision is

made regarding the digital meaning of the signal. We assume that the input noise is

a Gaussian random process and that the receiver filter in the demodulator is linear.

A linear operation performed on a Gaussian process will produce a second Gaussian

random process. Thus, the filter output noise is Gaussian. The output of the step

1 yields the test statistics

y(nTs) = si(nTs) + z(nTs) i = 1, 2 (3.99)

where si(nTs) is the desired signal component, and z(nTs) is the noise component.

To simplify the notation of (3.99) in the form of

y = si + z (3.100)

The noise component z is a zero mean Gaussian random variable, and thus y is

Gaussian random variable with mean of either s1 or s2. The probability density

function of the noise process z(t) is defined as

p(z) =
1

√

2πσ2
z

exp
[

− 1

2
(
z2

σ2
z

)
]

(3.101)

where σ2
z is the noise variance. Thus it follows from (3.99) and (3.100) that condi-
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tional pdfs p(y|s1) and p(y|s2) can be expressed as

p(y|s1) =
1

√

2πσ2
z

exp
[

− 1

2

(y − s1)
2

σ2
z

]

(3.102)

p(y|s2) =
1

√

2πσ2
z

exp
[

− 1

2

(y − s2)
2

σ2
z

]

(3.103)

These conditional pdfs are illustrated in the figure below, the rightmost conditional

pdf, p(y|s1), called the likelihood of s1, illustrates the probability density function

of the random variable y(nTs) given that symbol s1 was transmitted. Similarly,

−20 0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

time

v
o
l
t
s

Figure 3.31: A binary NRZ transmission in the presence of AWGN noise SNR 0 dB.

the leftmost conditional pdf p(y|s2), called the likelihood of s2, illustrates the pdf

y(nTs) that symbol s2 was transmitted. The received signal energy is important

parameter in the detection process. This is why the detection analysis for baseband

signals is the same as that for bandpass signal. Since y(nTs) is a voltage signal that

is proportional to the energy of the received symbol.

p(e|s1) = P (H2|s1) =
∫ γ0

−∞

p(y|s1)dy (3.104)

This is illustrated in the shaded area to the left of 0. Similarly an error occurs when

s2(t) is sent and the channel noise y(t) being greater than 0. The probability of this
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γ0

p(y|s2) p(y|s1)

−
√

Eb
0

√

Eb

x

p(y|si)

occurrence is

p(e|s2) = P (H1|s2) =
∫

∞

γ0

p(y|s2)dy (3.105)

The probability of an error is the sum of the probabilities of all the ways that an

error can occur. For the binary case, we can express the bit error probability as

pb =
2∑

i=1

p(e, si) =
2∑

i=1

p(e|si)p(si)

= p(e|s1)p(s1) + p(e|s2)p(s2) (3.106)

given the fact that signal s1(t) was transmitted, an error occurs if hypothesis H2 is

chosen (in other words s2 is detected at the receiver while s1(t) was transmitted) ; or

given that signal s2(t) was transmitted an error results if hypothesis H1 is chosen.

For the case where the apriori probabilities are equal that is p(s1) = p(s2) = 1/2

pb =
1

2
p(e|s1) +

1

2
p(e|s2) (3.107)

because of the symmetry of the probability density functions

pe = p(H2|s1) = p(H1|s2) (3.108)

The probability of error is numerically equal to the area under the tail of either

likelihood function p(y|s1) or p(y|s2) falling on the incorrect side of the threshold.

We can therefore compute pb by integrating p(y|s1) between the limits -∞ and γ0
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or by integrating p(y|s2) between the limits γ0 and ∞

pe =
∫

∞

γ0=(s1+s2)/2
p(y|s2)dy (3.109)

Here, γ0 = (s1 + s2)/2 is the optimum threshold, replacing in

pe =
∫

∞

γ0=(s1+s2)/2
exp

[

− 1

2

((y − s2)

σz

)2]

dy (3.110)

where σ2
z is the variance of the noise out of the correlator. Let u = (y− s2)/σz, then

σzdu = dy and

pb =
1

2

∫ γ0

−∞

1
√

2πσ2
z

exp
[

− (y − s1)
2

2σ2
z

]

dy +
1

2

∫ +∞

γ0

1
√

2πσ2
z

exp
[

− (y − s2)
2

2σ2
z

]

dy

(3.111)

Using two different substitution in both integrals we can write

u = −
(y − s1

σz

) du

dy
= − 1

σ2
z

→ du = − 1

σz

dy

y → −∞ ⇒ u → ∞
y = γ0 → −

(γ0 − s1

σz

)

u =
(y − s2

σz

) du

dy
=

1

σz

→ du =
1

σz

dy

y → γ0 → (γ0 − s2)

σz

y → ∞ ⇒ u → ∞

Using the above substitutions we can rewrite the expression for both conditional

probability distributions as

pb =
1

2

∫
∞

u=−
γ0−s1

σz

1√
2π

exp
[

− 1

2
u2
]

du+
1

2

∫ +∞

u=
γ0−s2

σz

1√
2π

exp
[

− 1

2
u2
]

du

=
1

2
Q
(

√
Eb

σz

)

+
1

2
Q
(

√
Eb

σz

)

= Q
(

√
Eb

σz

)

= Q
(
√

2Eb

N0

)

(3.112)

whereQ(x) is called complementary error function or co-error function is com-
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monly used symbol for probability under tail of Gaussian pdf. Now extending the

model to consider a 4 PAM transmission system, the symbol error rate performance

can be calculated similarly as The average energy of the constellation can be calcu-

lated as

Eavg. =
1

4
[(−3A)2 + (−A)2 + (A)2 + (3A)2]

Eavg. = 5A2

A =

√

Eavg.

5
(3.113)

It is a practice to normalize the average energy of the transmitted symbols to one

(1). The probability of symbol error for the above set of conditional probability

distribution can be calculated by using symmetry of error which is shaded.

γ0

p(y|s0)p(y|s1)p(y|s2)p(y|s3)

−3
A√
5

−2
A√
5

− A√
5

0 A√
5

2
A√
5

3
A√
5

y

p(y|si)
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ps = p(s0)
[

p(y <
2A√

5
|s0)

]

+ p(s1)
[

p(y >
2A√

5
|s1) + p(y < 0|s1)

]

+ p(s2)
[

p(y > 0|s2) + p(y < − 2A√
5

|s2)
]

+ p(s3)
[

p(y > − 2A√
5

|s3)
]

=
3

2
Q
(A/

√
5

σz

)

= (3.114)

BER performances for different modulation schemes are illustrated in the follow-

ing figures. As we have discussed in the lecture , the performance of transmission

system is tied with the operating SNR, similarly the BER performance has a direct

connection with the system throughput.

The students are expected to be able to read these graphs, determine required SNR

levels are a certain BER performance. Further detail are not given here but must

be referred from the lecture.
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Figure 3.32: BER performance of M-PSK transmission system.
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Figure 3.33: BER performance of M-QAM transmission system.

Dear Student, this handout is not a comprehensive document but it mearely serves

as a guideline/reference material. You are strongly encouraged to refer these topics

further in the following textbooks

1. Digital Communication by Jhon G. Proakis

2. Digital Communication by Bruce Karlson

3. Digital Communication by Grant and Glover

for further detail.
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Figure 3.34: BER performance of M-PAM transmission system.

Just because I don’t care doesn’t mean I don’t understand.
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